1,265 research outputs found

    The role of p53 in atherosclerosis

    Get PDF
    Although the role of the tumour suppressor gene p53 is well known in cancer, recent studies have highlighted a fundamental role for p53 in regulating cells in the advanced atherosclerotic plaque, the major cause of heart attacks and stroke. In particular, p53 is activated in the complex environment of the plaque, in part by DNA damage within the lesion, and regulates growth arrest, cell senescence and apoptosis of vascular smooth muscle cells (VSMCs). The role of endogenous p53 has been determined using p53 knockout in mice developing advanced atherosclerosis, using bone marrow transplant to separate effects on blood cells from vessel wall cells. These studies have produced apparently contradictory and surprising results. In particular, recent studies have identified a role for endogenous p53 in protection of VSMCs from apoptosis, trans-differentiation of bone marrow stromal cells into VSMCs in atherosclerosis, and altering the mode of cell death in the plaque

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure

    Structure of Pairs in Heavy Weakly-Bound Nuclei

    Get PDF
    We study the structure of nucleon pairs within a simple model consisting of a square well in three dimensions and a delta-function residual interaction between two weakly-bound particles at the Fermi surface. We include the continuum by enclosing the entire system in a large spherical box. To a good approximation, the continuum can be replaced by a small set of optimally-determined resonance states, suggesting that in many nuclei far from stability it may be possible to incorporate continuum effects within traditional shell-model based approximations.Comment: REVTEX format, 9 pages, 2 figures, 2 table

    New, efficient and robust, fiber-based quantum key distribution schemes

    Get PDF
    We present a new fiber based quantum key distribution (QKD) scheme which can be regarded as a modification of an idea proposed by Inoue, Waks and Yamamoto (IWY) [1]. The scheme described here uses a single phase modulator and two differential delay elements in series at the transmitter that form an interferometer when combined with a third differential delay element at the receiver. The protocol is characterized by a high efficiency, reduced exposure to an attack by an eavesdropper, and higher sensitivity to such an attack when compared to other QKD schemes. For example, the efficiency with which transmitted data contribute to the private key is 3/4 compared with 1/4 for BB84 [2]. Moreover, an eavesdropper can aquire a maximum of 1/3 of the key which leads to an error probability in the private key of 1/3. This can be compared to 1/2 and 1/4 for these same parameters in both BB84 and IWY. The combination of these considerations should lead to increased range and key distribution rate over present fiber-based QKD schemes.Comment: 4 pages, 5 figures, 1 equatio

    The influence of sediment compositions on the decline of Metapenaeus dalli in a temperate Australian estuary

    Get PDF
    Abundances of the western school prawn (Metapenaeus dalli) in the Swan-Canning Estuary have declined markedly in the last fifty years. Together with the decrease in abundance, there is strong anecdotal evidence from recreational fishers that the spatial distribution of this penaeid has changed as this species no longer being caught in the middle and upper reaches of the estuary. This is a marked shift in distribution, as work conducted in the 1980s showed that individuals of this species moved upstream from the lower reaches of estuary once salinity in these upstream areas reached 30. While, declining rainfall has resulted in these waters being more saline, our data show that these reaches are not utilised to the same extent by individuals of M. dalli. The research presented in this poster investigates the hypothesis that changes in sediment composition may be responsible for this shift in the spatial and temporal use of the estuary by this species. The implications of this research on the restocking program for M. dalli are discussed

    Assessing the sediment preference of a penaeid prawn to inform release strategies

    Get PDF
    The abundance of the Western School Prawn (Metapenaeus dalli) declined markedly in the Swan-Canning Estuary after the 1960s, resulting in the initiation of a restocking program in 2012. Further to the decline in abundance, anecdotal evidence from recreational fishers indicated that there had been a spatial shift in the distribution of this prawn. To test the hypothesis that a change in sediment composition may be responsible, the density of M. dalli, recorded monthly between October 2013 and August 2014, was correlated against sediment organic matter content and grain size distribution. Densities of M. dalli were found to differ among sediment types in summer, but not winter. Controlled laboratory experiments were used to investigate whether M. dalli exhibited a preference for sediments from either the upper or lower reaches of their distribution within the estuary. Prawns exhibited a preference for nearshore and offshore sediments that contained a lower percentage contribution of larger grain sizes and/or a higher percentage contribution of finer grain sizes, i.e. sediments from the lower rather than upper reaches. These experiments also revealed that emergence and activity rates of M. dalli are strongly related to photoperiod, with individuals preferring to remain buried during daylight hours and become active during darkness. Visual observations also indicated that the prawns were able to bury more rapidly in finer than coarse sediments, thus reducing their length of exposure to predators. The implications of these findings on the current restocking program for M. dalli in the Swan-Canning Estuary are discussed

    Perfect state distinguishability and computational speedups with postselected closed timelike curves

    Get PDF
    Bennett and Schumacher's postselected quantum teleportation is a model of closed timelike curves (CTCs) that leads to results physically different from Deutsch's model. We show that even a single qubit passing through a postselected CTC (P-CTC) is sufficient to do any postselected quantum measurement, and we discuss an important difference between "Deutschian" CTCs (D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the present outcome of an experiment. Then, based on a suggestion of Bennett and Smith, we explicitly show how a party assisted by P-CTCs can distinguish a set of linearly independent quantum states, and we prove that it is not possible for such a party to distinguish a set of linearly dependent states. The power of P-CTCs is thus weaker than that of D-CTCs because the Holevo bound still applies to circuits using them regardless of their ability to conspire in violating the uncertainty principle. We then discuss how different notions of a quantum mixture that are indistinguishable in linear quantum mechanics lead to dramatically differing conclusions in a nonlinear quantum mechanics involving P-CTCs. Finally, we give explicit circuit constructions that can efficiently factor integers, efficiently solve any decision problem in the intersection of NP and coNP, and probabilistically solve any decision problem in NP. These circuits accomplish these tasks with just one qubit traveling back in time, and they exploit the ability of postselected closed timelike curves to create grandfather paradoxes for invalid answers.Comment: 15 pages, 4 figures; Foundations of Physics (2011

    Supersymmetric Benchmarks with Non-Universal Scalar Masses or Gravitino Dark Matter

    Full text link
    We propose and examine a new set of benchmark supersymmetric scenarios, some of which have non-universal Higgs scalar masses (NUHM) and others have gravitino dark matter (GDM). The scalar masses in these models are either considerably larger or smaller than the narrow range allowed for the same gaugino mass m_{1/2} in the constrained MSSM (CMSSM) with universal scalar masses m_0 and neutralino dark matter. The NUHM and GDM models with larger m_0 may have large branching ratios for Higgs and/or ZZ production in the cascade decays of heavier sparticles, whose detection we discuss. The phenomenology of the GDM models depends on the nature of the next-to-lightest supersymmetric particle (NLSP), which has a lifetime exceeding 10^4 seconds in the proposed benchmark scenarios. In one GDM scenario the NLSP is the lightest neutralino \chi, and the supersymmetric collider signatures are similar to those in previous CMSSM benchmarks, but with a distinctive spectrum. In the other GDM scenarios based on minimal supergravity (mSUGRA), the NLSP is the lighter stau slepton {\tilde \tau}_1, with a lifetime between ~ 10^4 and 3 X 10^6 seconds. Every supersymmetric cascade would end in a {\tilde \tau}_1, which would have a distinctive time-of-flight signature. Slow-moving {\tilde \tau}_1's might be trapped in a collider detector or outside it, and the preferred detection strategy would depend on the {\tilde \tau}_1 lifetime. We discuss the extent to which these mSUGRA GDM scenarios could be distinguished from gauge-mediated models.Comment: 52 pages LaTeX, 13 figure

    Where and when to revegetate : a quantitative method for scheduling landscape reconstruction

    Full text link
    Restoration of native vegetation is required in many regions of the world, but determining priority locations for revegetation is a complex problem. We consider the problem of determining spatial and temporal priorities for revegetation to maximize habitat for 62 bird species within a heavily cleared agricultural region, 11 000 km2 in area. We show how a reserve-selection framework can be applied to a complex, large-scale restoration-planning problem to account for multi-species objectives and connectivity requirements at a spatial extent and resolution relevant to management. Our approach explicitly accounts for time lags in planting and development of habitat resources, which is intended to avoid future population bottlenecks caused by delayed provision of critical resources, such as tree hollows. We coupled species-specific models of expected habitat quality and fragmentation effects with the dynamics of habitat suitability following replanting to produce species-specific maps for future times. Spatial priorities for restoration were determined by ranking locations (150-m grid cells) by their expected contribution to species habitat through time using the conservation planning tool, ‘‘Zonation.’’ We evaluated solutions by calculating expected trajectories of habitat availability for each species. We produced a spatially explicit revegetation schedule for the region that resulted in a balanced increase in habitat for all species. Priority areas for revegetation generally were clustered around existing vegetation, although not always. Areas on richer soils and with high rainfall were more highly ranked, reflecting their potential to support high-quality habitats that have been disproportionately cleared for agriculture. Accounting for delayed development of habitat resources altered the rank-order of locations in the derived revegetation plan and led to improved expected outcomes for fragmentation-sensitive species. This work demonstrates the potential for systematic restoration planning at large scales that accounts for multiple objectives, which is urgently needed by land and natural resource managers

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tanβ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tanβ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tanβ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ
    corecore