472 research outputs found

    Numerical modelling of lateral stress on integral abutments due to cyclic loading

    No full text
    The integral bridge concept eliminates problems associated with expansion joints and bearings used on conventional bridges. However, integral structures are not free from problems, and of particular concern is the magnitude of lateral soil stress which acts on the abutments. The cyclic nature of abutment displacement, caused by thermal loading of the deck, results in increased lateral soil stress from the granular backfill. Previous experiments investigated the fundamental behaviour of a granular soil element under integral bridge loading. No existing constitutive soil model replicated this behaviour, and therefore a soil model has been developed based upon this data. It was designed to account for the changes in secant stiffness and vertical strain due to the density and rolling/sliding behaviour of soil particles at the active state, found to be important in the previous research. The model was implemented into a finite difference method program, and initially validated by modelling the experimental triaxial tests. Subsequent modelling of centrifuge tests of bridge abutments, carried out by independent researchers, allowed the soil model to be validated at system level. After validation and testing, the model was considered suitable for predicting the lateral stress profile acting on integral bridge abutments and used in a parametric study. This highlighted that the value of wall friction coefficient is particularly significant in the system behaviour. The centrifuge test is an idealised system where only rotation/flexure is possible, so a spread base abutment was modelled to investigate the predicted stress profile for an in-service bridge. These were shown to be significantly different to those prescribed by BA42/96, both in shape and magnitude. Additionally, modelling daily cycles results in a different profile to yearly cycles. This research has shown that the soil model developed can provide good estimates of lateral soil stress. This can be used to further investigate soil loads acting on integral bridge abutments with the aim of improving the design of such structures

    Regression equation for Ar3 temperature for coarse grained as-cast steels

    Get PDF
    A regression equation for the Ar3 temperature for as-cast ferrite/pearlite steels has been obtained. At these coarse grain sizes, very little influence of grain size on the Ar3 is observed. Out of all the elements examined, C, Mn and Nb had the major influence in decreasing the Ar3. A change in cooling rate from 10 to 200K/min results in only a small decrease of around 25oC. Of particular interest is the very marked effect of Nb in reducing the Ar3, an addition of 0.03%Nb causing a decrease in the Ar3 of 55oC

    Production, Collection and Utilization of Very Long-Lived Heavy Charged Leptons

    Full text link
    If a fourth generation of leptons exists, both the neutrino and its charged partner must be heavier than 45 GeV. We suppose that the neutrino is the heavier of the two, and that a global or discrete symmetry prohibits intergenerational mixing. In that case, non-renormalizable Planck scale interactions will induce a very small mixing; dimension five interactions will lead to a lifetime for the heavy charged lepton of O(1−100)O(1-100) years. Production of such particles is discussed, and it is shown that a few thousands can be produced and collected at a linear collider. The possible uses of these heavy leptons is also briefly discussed.Comment: 9 pages Late

    (No) Eternal Inflation and Precision Higgs Physics

    Full text link
    Even if nothing but a light Higgs is observed at the LHC, suggesting that the Standard Model is unmodified up to scales far above the weak scale, Higgs physics can yield surprises of fundamental significance for cosmology. As has long been known, the Standard Model vacuum may be metastable for low enough Higgs mass, but a specific value of the decay rate holds special significance: for a very narrow window of parameters, our Universe has not yet decayed but the current inflationary period can not be future eternal. Determining whether we are in this window requires exquisite but achievable experimental precision, with a measurement of the Higgs mass to 0.1 GeV at the LHC, the top mass to 60 MeV at a linear collider, as well as an improved determination of alpha_s by an order of magnitude on the lattice. If the parameters are observed to lie in this special range, particle physics will establish that the future of our Universe is a global big crunch, without harboring pockets of eternal inflation, strongly suggesting that eternal inflation is censored by the fundamental theory. This conclusion could be drawn even more sharply if metastability with the appropriate decay rate is found in the MSSM, where the physics governing the instability can be directly probed at the TeV scale.Comment: 25 pages, 3 figures. v2: updated value of top mass, added references, JHEP published versio

    Comparing plasma and faecal measures of steroid hormones in Adelie penguins Pygoscelis adeliae

    Get PDF
    Physiological measurements of both stress and sex hormones are often used to estimate the consequences of natural or human-induced change in ecological studies of various animals. Different methods of hormone measurement exist, potentially explaining variation in results across studies; methods should be cross-validated to ensure that they correlate. We directly compared faecal and plasma hormone measurements for the first time in a wild free-living species, the Adelie penguin (Pygoscelis adeliae). Blood and faecal samples were simultaneously collected from individual penguins for comparison and assayed for testosterone and corticosterone (or their metabolites). Sex differences and variability within each measure, and correlation of values across measures were compared. For both hormones, plasma samples showed greater variation than faecal samples. Males had higher mean corticosterone concentrations than females, but the difference was only statistically significant in faecal samples. Plasma testosterone, but not faecal testosterone, was significantly higher in males than females. Correlation between sample types was poor overall, and weaker in females than in males, perhaps because measures from plasma represent hormones that are both free and bound to globulins, whereas measures from faeces represent only the free portion. Faecal samples also represent a cumulative measure of hormones over time, as opposed to a plasma ‘snapshot’ concentration. Our data indicate that faecal sampling appears more suitable for assessing baseline hormone concentrations, whilst plasma sampling may best define immediate responses to environmental events. Consequently, future studies should ensure that they select the most appropriate matrix and method of hormone measurement to answer their research questions

    Anti-Periodic Boundary Conditions in Supersymmetric DLCQ

    Full text link
    It is of considerable importance to have a numerical method for solving supersymmetric theories that can support a non-zero central charge. The central charge in supersymmetric theories is in general a boundary integral and therefore vanishes when one uses periodic boundary conditions. One is therefore prevented from studying BPS states in the standard supersymmetric formulation of DLCQ (SDLCQ). We present a novel formulation of SDLCQ where the fields satisfy anti-periodic boundary conditions. The Hamiltonian is written as the anti-commutator of two charges, as in SDLCQ. The anti-periodic SDLCQ we consider breaks supersymmetry at finite resolution, but requires no renormalization and becomes supersymmetric in the continuum limit. In principle, this method could be used to study BPS states. However, we find its convergence to be disappointingly slow.Comment: 9pp, 2 figure

    Self Excitation of the Tunneling Scalar Field in False Vacuum Decay

    Get PDF
    A method to determine the quantum state of a scalar field after O(4)O(4)-symmetric bubble nucleation has been developed recently. The method has an advantage that it concisely gives us a clear picture of the resultant quantum state. In particular, one may interpret the excitations as a particle creation phenomenon just as in the case of particle creation in curved spacetime. As an application, we investigate in detail the spectrum of quantum excitations of the tunneling field when it undergoes false vacuum decay. We consider a tunneling potential which is piece-wise quadratic, hence is simple enough to allow us an analytical treatment. We find a strong dependence of the excitation spectrum upon the shape of the potential on the true vacuum side. We then discuss features of the excitation spectrum common to general tunneling potentials not restricted to our simple model.Comment: 24 pages, uuencoded compressed postscript fil

    A Matrix Big Bang

    Full text link
    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.Comment: 25 pages, LaTeX; v2: discussion of singularity of Einstein frame metric added, references adde

    Unconventional low-energy SUSY from warped geometry

    Get PDF
    Supersymmetric models with a warped fifth spatial dimension can solve the hierarchy problem, avoiding some shortcomings of non-supersymmetric constructions, and predict a plethora of new phenomena at typical scales Lambda not far from the electroweak scale (Lambda ~ a few TeV). In this paper we derive the low-energy effective theories of these models, valid at energies below Lambda. We find that, in general, such effective theories can deviate significantly from the Minimal Supersymmetric Standard Model (MSSM) or other popular extensions of it, like the NMSSM: they have non-minimal Kaehler potentials (even in the Mp -> \infty limit), and the radion is coupled to the visible fields, both in the superpotential and the Kaehler potential, in a non-trivial (and quite model-independent) fashion. The corresponding phenomenology is pretty unconventional, in particular the electroweak breaking occurs in a non-radiative way, with tan beta \simeq 1 as a quite robust prediction, while the mass of the lightest Higgs boson can be as high as ~ 700 GeV.Comment: 53 pages, 2 ps figure
    • 

    corecore