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Amethod to determine the quantum state of a scalar �eld afterO(4)-symmetric bubble nucleation

has been developed recently. The method has an advantage that it concisely gives us a clear picture of
the resultant quantum state. In particular, one may interpret the excitations as a particle creation

phenomenon just as in the case of particle creation in curved spacetime. As an application, we

investigate in detail the spectrum of quantum excitations of the tunneling �eld when it undergoes
false vacuum decay. We consider a tunneling potential which is piece-wise quadratic, hence is simple

enough to allow us an analytical treatment. We �nd a strong dependence of the excitation spectrum

upon the shape of the potential on the true vacuum side. We then discuss features of the excitation
spectrum common to general tunneling potentials not restricted to our simple model.

I. INTRODUCTION

There is a growing interest in the quantum state of a scalar �eld inside a vacuum bubble that appears after false
vacuum decay. This is because the spacetime region inside the bubble may be considered as a homogeneous and
isotropic open universe and, when combined with a class of in
ationary models, there is a possibility that our universe
is entirely contained in a single bubble and the present large scale structure of the universe with a low density
parameter, 
0 � 0:1, may be explained [1{6]. In the standard scenario, in
ation solves both the horizon and 
atness
problems simultaneously. But in the new one-bubble scenario, these problems are solved by two di�erent in
ationary
stages of the universe. In the �rst in
ationary stage, the universe is in a false vacuum. If this stage lasts long enough,
the universe may be approximated by a de Sitter spacetime with high accuracy when the false vacuum decay occurs
through quantum tunneling. This implies the decay is mediated by the O(4)-symmetric Euclidean bounce, which
consequently ensures that the spacetime after the decay has O(3; 1)-symmetry [7]. In other words, the region inside
a nucleated bubble is a homegeneous and isotropic open universe. Then if the vacuum energy inside the bubble is
nonvanishing, the second in
ationary stage follows and a large amount of entropy will be produced at the end of the
second in
ation to solve the 
atness problem.y

�JSPS junior fellow
yHere by the 
atness of the universe we mean 
0 is not greatly di�erent from unity.
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In order for this one-bubble in
ation scenario to be successful, it is then a matter of great importance that if the
quantum 
uctuations of a scalar �eld inside a nucleated bubble can account for the observed large scale structures of
the universe as well as for the detected anisotropies of the cosmic microwave background. As has been calculated in
Refs. [4,5], the information of the quantum state at the beginning of the second in
ation inside a nucleated bubble
remains until today and is re
ected in the CMB anisotropies on large angular scales, particularly in those corresponding
to supercurvature scales at matter-radiation decoupling. It is thus of particular interest to clarify properties of the
quantum state inside a nucleated bubble and how they are brought forth through false vacuum decay.
In one of our previous papers [15], we have investigated this problem by assuming that the quantum state is in the

Euclidean vacuum (Bunch-Davies vacuum). This means we have neglected the e�ect of quantum excitations through
tunneling process but only taken into account the e�ect of the background spacetime curvature. Although one can
construct a model in which this is a good approximation, such as the one advocated recently by Linde [6], it will not
be so if there is only one scalar �eld and it is responsible both for the false vacuum decay and for the second in
ation.
On the other hand, e�orts to understand the quantum excitations during tunneling process was �rst made by

Rubakov [8] and then by Vachaspati and Vilenkin [9]. Subsequently, based on the multidimensional wave function
approach [10,11,14], we have investigated quantum excitations produced through false vacuum decay [12,13]. In
particular, in [13], we have presented a systematic method to evaluate the degree of quantum excitations and calculated
the excitation spectrum for simple models. However, there we have made several assumptions which may not be
relevant for the one-bubble in
ation scenario. One of them is the neglection of the background spacetime curvature.
Another is that we did not consider the excitations of the tunneling scalar �eld itself but some other one that couples
to the tunneling �eld through the mass term. Although these simpli�cations made it easy to understand gross features
of the quantum state inside the bubble, we have to admit that it is far from complete. For example, if one considers
the excitations of the tunneling �eld, there exists inevitably a region of negative mass-squared around the top of the
potential barrier and that may a�ect the results seriously.
In this paper, as a step toward full understanding of the matter, we extend our previous analysis [13] and investigate

the quantum excitations of the tunneling �eld itself through false vacuum decay. However, for simplicity, we neglect
the background curvature and assumes the Minkowski background. The paper is organized as follows. In section 2, to
make the paper self-contained, we brie
y review our formalism for determining the quantum state after false vacuum
decay. Our formalism uses the fact that the excitations can be concisely described in the language of particle creation
due to a varying mass, as that in curved spacetime. In section 3, we present a model of the tunneling potential which is
piece-wise quadratic, hence is simple enough to allow us an analytical treatment but is expected to retain the essential
feature speci�c to the excitations of a tunneling �eld. Then we express the resulting quantum state in the language of
particle creation and give a complete (but complicated) formula of the particle spectrum for this model. In section 4,
based on the formulae derived in section 3, we evaluate the particle spectrum for various model parameters in detail.
For limiting values of the parameters, we give analytical expressions for the particle spectrum. For other values of the
parameters we show the results obtained numerically. In section 5, we discuss possible role of discrete modes which are
associated with the vibration of the bubble wall. Although these modes cannot be interpreted as particle modes, we
argue that they will also contribute to the quantum state inside the bubble but those with spherical harmonic indices
` = 0 and 1, which represent translational degrees of freedom of the bubble location and gives rise to divergence in
the two-point function, will be absorbed into the metric perturbation when gravitational degrees of freedom are taken
into account. Finally, section 6 is devoted to summary and future issues.
Throughout this paper, the metric signature for Lorentzian spacetime is (� + ++) and the units �h = 1 and c = 1

are used.

II. REVIEW OF FORMALISM

To begin with, we give a brief sketch of our method for solving the evolution of the quantum state through false
vacuum decay. We use the multidimensional WKB wave function approach originally developed by Banks, Bender
and Wu [10] and de Vega, Gervais and Sakita [11], and recently elaborated by us [14]. We consider a scalar �eld � in
the Minkowski spacetime whose action is given by

S =

Z
d4x

"
�1

2
@�� @

��� V (�)

#
; (2.1)

where V (�) is a tilted double-well type potential as shown in Fig. 2. We consider the situation in which the �eld is
initially at the false vacuum (� = �F ) and decays toward the true vacuum (� = �T ) by quantum tunneling.
In order to trace the evolution of the quantum state through false vacuum decay, we construct a quasi-ground state

wave functional which is an energy eigenstate of the time-independent Schr�odinger equation and is exponentially close
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to the would-be ground state wave functional if � = �F were the absolute minimumof the potential. That is, denoting
by
��	� the quasi-ground state, we have

Ĥ	 = E	 ;

E =

Z
d3x V (�F ) + (the zero point energy at false vacuum) : (2.2)

where

	 =


�(�)

��	� ;

Ĥ :=

Z
d3x

"
1

2

�1
i

�

��(x)

�2
+

1

2

3X
i=1

�@�(x)
@xi

�2
+ V (�)

#
: (2.3)

We solve Eq. (2.2) in the WKB approximation. In the lowest WKB order, 	 is completely dominated by �eld
con�gurations that satisfy the �eld equation for �. Introducing a parameter T (the WKB time variable), the classical
�eld con�gurations �B(x; T ) satisfy

@2�B

@T 2
+

3X
i=1

@2�B

@xi2
� dV (�B)

d�B
= 0 ; (2.4)

where T = � < 0 for classically forbidden �eld con�gurations and T = it (t : real) for classically allowed �eld
con�gurations. We call � the Euclidean time, and t the Lorentzian time. As we consider the wave functional which
describes false vacuum decay, the relevant classical solution is the O(4)-symmetric bounce solution [7] which depends
on the spacetime coordinates only through T 2 + x2. The bounce solution �B(T

2 + x2) gives a sequence of �eld
con�gurations which describes tunneling process. In the classically forbidden region, at � !�1, the �eld is at false
vacuum. As � becomes larger, a bubble of true vacuum appears in the false vacuum background and grows until
� = 0. At � = 0, which corresponds to the turning point in quantum mechanics, the �eld con�guration is joined
to those described by the analytic continuation of the bounce solution to the Lorentzian time: � ! it. Since we
are interested in the state after false vacuum decay, the corresponding wave functional is given by taking t > 0. A
schematic picture of the bounce solution is drawn in Fig. 1. For convenience, we call � < 0 the Euclidean region and
t > 0 the Lorentzian region, and denote them respectively by E andM.

t

FIG. 1. A schematic picture of the bounce solution.
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In the next WKB order, quantum 
uctuations around the bounce solution come into play. Setting � = �B +', the
WKB wave functional to this order is given by [11,14]

	[�(�)] = N (T ) exp

"
�
Z T

dT 0
Z
d3x

�
1

2

�
@�B

@T 0

�2
+

1

2

�
@�B

@x

�2
+ V (�B)

�#

� exp

"
�1

2

Z Z
d3xd3y'(x)
(x;y;T )'(y)

#
; (2.5)

where


(x;y;T ) :=

Z
d3k

@gk(x; T )

@T
g�1
k
(y; T ) : (2.6)

The function gk(x; T ), which we call the mode function, satis�es the �eld equation for ' on the background �B,"
@2

@T 2
+

3X
i=1

@2

@xi2
� V 00

�
�B(T

2 + x2)
�#
gk(x; T ) = 0 ; (2.7)

and the inverse g�1
k
(x; T ) is de�ned byZ

d3xgk(x; T )g
�1
k0 (x; T ) = �3(k � k0) : (2.8)

To solve Eq. (2.7), we need to set an appropriate boundary condition. At false vacuum �B = �F (T = � !�1), the
second line of the wave functional (2.5) must coincide with that of the would-be ground state at false vacuum. This
requirement determines the boundary condition at � !�1 as

gk(x; � )! e�ikx+!k� ; (2.9)

where !k :=
q
k2 + V 00

�
�F
�
. In the Lorentzian regionM, the function gk(x; it) is given by the analytic continuation

of gk(x; � ) through � = 0. After all, the problem of constructing the WKB wave functional 	 reduces to the problem
of solving Eq.(2.4) and Eq.(2.7).
InM, the state of ' described by the second line of Eq.(2.5) has a simple interpretation. In the second quantization

picture (regarding t as real physical time), ' is represented as a �eld operator,

'(x; t) =

Z
d3k

�
uk(x; t)b(k) + uk(x; t)b

y(k)
�

; (2.10)

where bk and by
k
are the annihilation and creation operators, respectively, relative to a state

��~0� annihilated by bk,
and a bar denotes complex conjugation.. The mode functions uk(x; t) satisfy the �eld equation and are normalized
with respect to the Klein-Gordon inner product, but are not necessarily positive frequency functions. Hence the
`vacuum'

��~0� annihilated by b(k) is not generally an eigenstate of the Hamiltonian unlike the Minkowski vacuum
��0�.

The former is a squeezed state over the latter, given by a Bogoliubov transformation, and contains non-vanishing
spectrum of excited particles. It is known that the wave functional for the state

��~0� is given by



'(�)

��~0� / exp

"
�1

2

Z Z
d3xd3y'(x)
(x;y; t)'(y)

#
(2.11)

where


(x;y; t) :=

Z
d3k

1

i

@uk(x; t)

@t
u�1
k
(y; t) : (2.12)

This expression is nothing but the second line of Eq.(2.5) if uk(x; t) is identi�ed with gk(x; it). Since 
(x;y; t) is

invariant under linear transformations of gk(x; it), we then conclude uk(x; t) =
P

k0 ckk0gk0(x; it) for some ckk0 with
det ckk0 6= 0. Thus the quantum state of ' after tunneling is a squeezed state over the Minkowski vacuum determined
by the mode function uk(x; t).
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In order to �nd the mode function uk(x; t), it is convenient to use the coordinates which respect the symmetry of
the background �B, i.e., O(4) in E and O(3; 1) inM [13]. In the Euclidean region E , we use (�E ; �E; �; ') where (�; ')
are the usual two-dimensional spherical coordinates, and (�E ; �E) are related to r = jxj and � as

r = �E sin�E ; � = ��E cos �E ;

0 � �E � �

2
; 0 � �E <1 : (2.13)

Then the Euclidean metric takes the form,

ds2E = d�2E + �2E (d�
2
E + sin2 �Ed


2): (2.14)

In the Lorentzian region M, we have two distinctive spacetime regions characterized by the action of O(3; 1). They
are separated by the light cone that expands from r = t = 0. The spacelike region is called the (spherical) Rindler
space, and the (future) timelike region the Milne universe. Since we are interested in the quantum state inside the
bubble, we focus on the region corresponding to the Milne universe. Then the coordinates in the Milne universe are
obtained by the replacement (�E ; �E)! (�i�; i�), which yields

r = � sinh�; t = � cosh�;

0 < � <1; 0 < � <1 : (2.15)

The metric of the Milne universe is given by

ds2M = �d�2 + �2(d�2 + sinh2 �d
2): (2.16)

It is to be reminded that �B is constant on the �E = const: (or � = const:) hypersurface. With these coordinates the
Laplacian (or d'alambertian) which appears in the �eld equation is rewritten as

@2

@�2
+

3X
i=1

@2

@xi2
=

@2

@�2E
+

3

�E

@

@�E
+

1

�2E
L2E ;

L2E :=
1

sin2 �E

@

@�E

 
sin2 �E

@

@�E

!
+

1

sin2 �E
L2
 ; (2.17)

in the Euclidean region, and as

� @2

@t2
+

3X
i=1

@2

@xi2
= � @2

@�2
� 3

�

@

@�
+

1

�2
L2 ;

L2 :=
1

sinh2 �

@

@�

 
sinh2 �

@

@�

!
+

1

sinh2 �
L2
 ; (2.18)

in the Lorentzian region, where L2
 is the Laplacian on the unit two sphere.
As the O(4)-symmetric bounce solution is considered, Eq.(2.4) reduces to�

d2

d�2E
+

3

�E

d

d�E

�
�B(�E ) = V 0(�B(�E)) ; (2.19)

in E . The boundary condition is

�B(�E)! �F for �E !1;

d�B

d�E
(0) = 0: (2.20)

InM, the equation for �B is obtained by replacing �E by �i� in Eq.(2.19), which describes the evolution of �B inside
a nucleated bubble.
Given the background solution �B , we need to solve for gk. For this purpose, we expand gk(x; it) in terms of

harmonic functions on the three dimensional unit hyperboloid,
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Yp`m(�;
) = fp`(�)Y`m(
) ; fp`(�) =

�����(ip+ `+ 1)

�(ip)

���� 1p
sinh�

P
�`�1=2

ip�1=2 (cosh �); (2.21)

which is an eigenfunction of the Laplacian operator �L2 with eigenvalue 1 + p2,

�L2Yp`m = (1 + p2)Yp`m : (2.22)

Then gk(x; it) is expanded as

gk(x; it) =

Z
1

0

dp
X
`m

�(k; p`m)up`m(�; �;
); up`m(�; �;
) =
Fp(�)

�
Yp`m(�;
); (2.23)

where we have associated the complex conjugate of up`m with gk in accordance with the general discussion. We
mention that p corresponds to a comoving wavenumber in the Milne universe and p = 1 to the spatial curvature scale
on the � = const: hypersurface. We then consider the analytic continuation of uplm to the Euclidean region by � ! i�E
(0 � �E) and �!�i�E (0 � �E � �=2). In E , Eq.(2.7) for gk reduces to the equation for Gp(�E ) := Fp(i�E),�

@2

@�2E
+

1

�E

@

@�E
+
p2

�2E
� V 00 (�B(�E ))

�
Gp(�E) = 0 : (2.24)

It has been shown that the boundary condition (2.9) for gk(x; � ) at � ! �1 means the regularity of gk on the
� < 0 half of the complex T -plane. Since fp`(�i�E) is regular for 0 � �E � �=2, this condition is translated to the
boundary condition for Gp(�E ) that [13]

Gp(�E)! Kip(m�E ) for �E !1: (2.25)

In M, Fp(�) is given by solving Eq.(2.24) with �E replaced by �i� and with the asymptotic boundary condition
Fp(�) = Gp(�i�) at � ! 0. As � ! 1, the bounce solution �B(�) undergoes dampted oscillations around the true
vacuum � = �T . Therefore at � !1, Fp(�) will generally have the form,

Fp(�) =
2p
�
c1pfp(�) +

2p
�
c2pfp(�) ; (2.26)

where

fp(�) =

p
�

2
e�p=2H

(2)
ip (M�); M2 = V 00(�T ): (2.27)

Note that fp(�) is the positive frequency function for the Minkowski vacuum [13]. That is, one can expand the �eld
operator as

'(�; �;
) =

Z 1

0

dp
X
`m

"
fp(�)

�
Yp`m(�;
)ap`m +

fp(�)

�
Yp`m(�;
)a

y

p`m

#
; (2.28)

and the Minkowski vacuum is annihilated by ap`m. On the other hand, as mentioned previously, the quantum state

after tunneling is a \vacuum" state
��~0� speci�ed by regarding Fp(�) as the (unnormalized) \positive frequency"

functions. The orthonormalized positive frequency mode functions are then given by up`m with Fp replaced by

Up(�) =

r
�

4(jc1pj2 � jc2pj2)Fp(�) : (2.29)

Thus the spectrum of created particles np observed by the Minkowski vacuum observer in the asymptotically future
region is given by



~0
��ayp`map0`m

��~0� = np�(p� p0); np =
1��c1p=c2p��2 � 1

: (2.30)
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III. SOLVABLE MODEL

In this section, applying the formalismreviewed the previous section to an analytically solvable model, we determine
the quantum state of the tunneling �eld inside a nucleated bubble. Speci�cally we consider a potential which is
piece-wise quadratic; we match a convex potential with V 00(�) = ��2 for �2 < � < �1 to concave potentials with
V 00(�) = m2 for � < �2 and V 00(�) = M2 for � > �1. We require that the potential V (�) and its �rst derivative
V 0(�) be continuous everywhere. For convenience, we choose the true vacuum to be at the origin, �T = 0. Then the
potential V (�) is given as

V (�) =

8>>>>><
>>>>>:

M2

2
�2 ; �1 � � <1;

��
2

2
�2 + a�1�+ b�21 ; �2 � � < �1 ;

m2

2
�2 + c�1�+ d�21 ; �1 < � < �2 ;

(3.1)

where

a = �2 +M2 ;

b = �1

2
(�2 +M2) ;

c = �2 +M2 � �2

�1
(m2 + �2) ;

d = �1

2
(�2 +M2) +

1

2

�
�2

�1

�2
(m2 + �2) : (3.2)

We note that the �eld value at false vacuum is �F = �c�1=m2 and that at the peak of the potential barrier is
�P = a�1=�

2. A sketch of the potential is drawn in Fig. 2. The requirements that the potential energy at false
vacuum V (�F ) is higher than that at true vacuum V (�T ) and that the peak of the potential barrier must exist
between the two vacua lead to the constraints on the parameters,

1 +
M2

�2
<
�2

�1
< 1 +

M2

�2
+
mM

�2

s
�2 +M2

m2 + �2
: (3.3)

f

f

m

ff

f
m

f
f

FIG. 2. The potential of the tunneling �eld.

Here we need to comment on the scaling property of this system. Under the rescaling given by

�! g�; �i ! g�i (i = 1; 2)

x! g0x;

m! m=g0; �! �=g0; M !M=g0; (3.4)
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the action scales as

S !
�
g

g0

�2
S : (3.5)

Thus the system is transformed to the same system but with a di�erent Planck constant. Since the decay rate of the
false vacuum is determined by the value of the action of the bounce solution, the tunneling rate changes under this
rescaling. However as the �eld equation is invariant, the particle creation rate does not change. Thus every rescaled
model is equivalent with each other as long as our interest is restricted to the particle creation. Therefore specifying
the only three non-dimensional parameters, say m=M , �=M and �2=�1 is su�cient for our purpose.

A. bounce solution

First let us consider the bounce solution. In our potential model, we may regard the bubble wall to be the spacetime
region surrounded by the spheres at �1 and �2 where �i = �B(�i) (i = 1; 2). So let us call �1 and �2 the inner and
outer radii of the wall, respectively. With this de�nition, the wall is nothing but the negative mass-squared region.
Here we tacitly assumed that the wall is entirely contained in the Euclidean region E ; 0 < �1 < �2 < 1. But there
exists a case in which the wall extends to the Lorentzian regionM. Since the scalar �eld �B can get over the potential
barrier only in E , the outer edge of the wall �2 must be in E , but the inner edge of the wall �1 can be either in E or
inM. We call the former the EE case, while the latter the EL case. We �rst consider the EE case. The EL case will
be discussed at the end of this subsection.
For the potential (3.1), Eq.(2.19) reduces to Bessel's di�erential equation. Therefore the bounce solution �B(�E)

which satis�es the boundary condition (2.20) takes the form,

�B(�E )

�1
=

8>><
>>:
A(M�E)

�1I1(M�E) ; 0 � �E < �1 ;

B1(��E)
�1J1(��E) + B2(��E)

�1N1(��E) +
a

�2
; �1 � �E < �2 ;

C(m�E)
�1K1(m�E )� c

m2
; �2 � �E <1;

(3.6)

where Jn and Nn are the Bessel functions of the �rst and second kinds, respectively, and In and Kn are the modi�ed
Bessel functions of the �rst and second kinds, respectively. There are six unknown (non-dimensional) variables in the
above; A, B1, B2, C, M�1 and M�2.
As the potential is constructed to be smooth to its �rst derivative, �B , d�B=d�E and d2�B=d�

2
E must be continuous

everywhere. Requiring this continuity at the junction points �E = �i, together with the equalities �i = �B(�i)
(i = 1; 2), leads to the following algebraic equations:

1 = A(M�1)
�1I1(M�1) = (��1)

�1 [B1J1(��1) + B2N1(��1)] +
a

�2
;

AI2(M�1) = �B1J2(��1) �B2N2(��1);

AI3(M�1) =
�

M
[B1J3(��1) +B2N3(��1)] ; (3.7)

and

�2

�1
= C(m�2)

�1K1(m�2)� c

m2
= (��2)

�1 [B1J1(��2) + B2N1(��2)] +
a

�2
;

CK2(m�2) = B1J2(��2) + B2N2(��2);

CK3(m�2) =
�

m
[B1J3(��2) + B2N3(��2)] ; (3.8)

where the second equality in the �rst line of each set of the equations is the continuity of �B, the second line is that
of d�B=d�E , and the third line is that of d=d�E(�

�1
E d�B=d�E). Of course, these equations are not independent with

each other; the third lines of each set can be derived from the rest of equations. Hence there are six independent
equations which are necessary and su�cient to determine A, B1, B2, C, M�1 and M�2.
The analytic continuation of this bounce solution toM is given by the replacement of �E by �i� as before:

�B(�i�) = A(M�)�1J1(M�)�1 : (3.9)
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As the oscillation around the true vacuum attenuates, �B does not reach the junction point �1 any more inM. Hence
�B is con�ned in the region V 00(�) =M2 and there is no additional particle creation after tunneling in this case.
Here it is to be noted that the equation for the mode function Gp(�E ) (2.24) is expressed not in terms of the

original potential parameters m=M , �=M and �2=�1 but rather of parameters which specify the wall con�guration.
In the present case, the wall con�guration parameters are m=M , �=M , M�1 and M�2. Thus instead of the original
potential parameters we may regard these four parameters as those specify the model, three of which can be given
freely. A convenient choice for the discussion given below is to give m=M , M�1, M�2. With this choice we �nd �=M
is determined from the four equations consisted of the second and third lines of Eqs. (3.7) and (3.8), despite the fact
that there are �ve unknowns; A, B1, B2, C and �=M . This is because these four equations are homogeneous with
respect to A, B1, B2 and C. In fact, from the condition that there exists a non-trivial solution for A, B1, B2 and C,
we can derive the equation to determine �=M ,

det

0
B@ I3(M�1)J2(��1) +

�

M
I2(M�1)J3(��1) I3(M�1)N2(��1) +

�

M
I2(M�1)N3(��1)

K3(m�2)J2(��2)� �

m
K2(m�2)J3(��2) K3(m�2)N2(��2) � �

m
K2(m�2)N3(��2)

1
CA = 0: (3.10)

The fact that �=M is determined in this manner can be explained by taking the derivative of the equation for the
bounce (2.19), �

� d2

d�2E
+

15

4�2E
+ V 00(�E )

�
 = 0; (3.11)

where  := �
3=2
E d�B=d�E. The function  satis�es the boundary condition,

 ! 0 for �E ! 0 and 1; (3.12)

and it has no node. This is just the condition that the ground state wave function for a one-dimensional quantum
mechanics with the potential 15=(4�2E)+V

00(�E ) should have zero energy eigenvalue. Given m=M ,M�1 andM�2, this
condition is exactly what is expressed by Eq.(3.10). Moreover, from the above analogy with the quantum mechanics
it is clear that � cannot exceed the order of 1=(�2 � �1).
Now let us discuss the EL case in which the inner edge of the wall is in the Lorentzian region M. In this case the

bounce solution �B is given by

�B(�E)

�1
=

8<
:
B(��E )

�1J1(��E) +
a

�2
; 0 � �E < �2 ;

C(m�E )
�1K1(m�E )� c

m2
; �2 � �E <1;

(3.13)

with the junction conditions,

�2

�1
= C(m�2)

�1K1(m�2) � c

m2
= (��2)

�1BJ1(��2) +
a

�2
;

CK2(m�2) = BJ2(��2);

CK3(m�2) =
�

m
BJ3(��2): (3.14)

By the same reason as in the EE case, we have three independent equations and there are the same number of
unknowns; B;C and M�2.
The analytic continuation of this bounce solution toM is

�B(�i�)
�1

=

(
B(��)�1I1(��) +

a

�2
; 0 � � < �1 ;

A1(M�)�1J1(M�) +A2(M�)�1N1(M�) ; �1 � � <1;
(3.15)

with the junction conditions,

1 = B(��1)
�1I1(��1) +

a

�2
= A1(M�1)

�1J1(M�1) + A2(M�1)
�1N1(M�1);

BI2(��1) = A1J2(M�1) +A2N2(M�1);

BI3(��1) =
M

�
(A1J3(M�1) +A2N3(M�1)) : (3.16)
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Here again only three of the above equations are independent and the unknown parameters are A1, A2 and M�1,
assuming B is known by solving Eqs.(3.14).
As in the EE case, we may choose the wall con�guration parameters, m=M , M�1 and M�2, as independent model

parameters. As before, �=M is determined from the last two equations of (3.14). Speci�cally the equation to be
solved is

K3(m�2)J2(��2) =
�

m
K2(m�2)J3(��2): (3.17)

Thus in the EL case �=m is independent ofM�1 and is given as a function of m�2. More precisely, a close analysis of
Eq. (3.17) reveals that ��2 varies from j1;1 � 3:8132 to j2;1 � 5:1356 as m�2 varies from zero to in�nity, where jm;n
is the n-th zero point of the Bessel function Jm(z).

B. mode functions and particle spectrum

As we have found the background solution �B, we now turn to the equation for the mode function (2.24). As in
the case of the bounce solution, Eq. (2.24) reduces again to Bessel's di�erential equation. First consider the EE case.
In this case, Gp(�E) in E is solved to give

Gp(�E) =

8<
:
a1pKip(M�E) + a2pIip(M�E); 0 � �E < �1 ;

b1pJip(��E) + b2pNip(��E); �1 � �E < �2 ;
Kip(m�E ); �2 � �E <1;

(3.18)

where the function Kip is chosen in the interval �2 � �E <1 in accordance with the boundary condition (2.25). This
time, Gp(�E) and its �rst derivative are necessarily continuous at the junction points. These conditions determine
the coe�cients a1p, a2p, b1p and b2p. Using the matrix notation, a1p and a2p are expressed as�

a1p
a2p

�
= XpYp

�
Kip(m�2)
mK 0

ip(m�2)

�
; (3.19)

where

Xp = �1

�
MI0ip(M�1) �Iip(M�1)
�MK0

ip(M�1) Kip(M�1)

��
Jip(��1) Nip(��1)
�J 0ip(��1) �N 0

ip(��1)

�
; (3.20)

Yp =
��2

2

�
�N 0

ip(��2) �Nip(��2)
��J 0ip(��2) Jip(��2)

�
: (3.21)

The mode function Fp(�) in the Lorentzian regionM is given by Eq. (2.26), where the coe�cients c1p and c2p are
related to a1p and a2p as follows. Following the prescription �E !�i�, analytic continuation of the Bessel functions
gives

Kip(�iM�) =
�i

2
e��p=2H

(1)
ip (M�) ;

Iip(�iM�) =
1

2
e�p=2

�
H

(1)
ip (M�) +H

(2)
ip (M�)

�
: (3.22)

This implies the following relation, �
c1p
c2p

�
=

1

2

�
�i e�p

0 1

��
a1p
a2p

�
: (3.23)

Since

Gp(�E) =

�
a1p �

i

�
sinh(�p)a2p

�
Kip(M�E) +

a2p

2
[Iip(M�E) + I�ip(M�E)] ; (3.24)

for 0 � �E < �1 where bothKip and Iip+I�ip are real, the fact that Gp(�E ) is real in E implies both a1p� i
�
sinh(�p)a2p

and a2p must be real. Using this property, the expression (2.30) for the particle spectrum np is rewritten as
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np =
a22p

�2ja1pj2
; (3.25)

where a1p and a2p are given by Eq. (3.19). This expression, although exact, is too complicated that it is almost
impossible to gain any physical insight from it. In the next section, we will examine several extreme situations in
which we can obtain approximate analytical formulas which are more comprehensible. We will also evaluate Eq.(3.25)
numerically to �ll the parameter regions not covered by the approximate formulas.
Now we consider the EL case. In this case, the mode function Gp(�E) and its analytic continuation Fp(�) = Gp(�i�)

are expressed as

Gp(�E ) =

�
Kip(m�E); �2 � �E <1;
b1pJip(��E) + b2pNip(��E); 0 � �E < �2 ;

(3.26)

Fp(�) =

(
~b1pIip(��) + ~b2pKip(��); 0 � � < �1 ;

c1pe
��p=2H

(1)
ip (M�) + c2pe

�p=2H
(2)
ip (M�); �1 � � <1 :

(3.27)

Through the origin �E = � = 0, the Bessel functions are analytically continued as

Jip(�i��) = e�p=2Iip(��) ;

Nip(�i��) = �ie�p=2Iip(��)� 2

�
e��p=2Kip(��) : (3.28)

With the aid of these relations, we get�
c1p
c2p

�
= ZpWpYp

�
Kip(m�2)
mK 0

ip(m�2)

�
; (3.29)

where

Zp =
��1

�4i

 
Me�p=2H(2)0

ip(M�1) �e�p=2H(2)
ip (M�1)

�Me��p=2H(1)0
ip(M�1) e��p=2H

(1)
ip (M�1)

!�
Iip(��1) Kip(��1)
�I0ip(��1) �K0

ip(��1)

�
; (3.30)

Wp =

�
e�p=2 �ie�p=2
0 � 2

�
e��p=2

�
; (3.31)

and Yp is given in Eq. (3.21). Substituting c1p and c2p given by Eq. (3.29) into Eq. (2.30), we obtain the expression
for the spectrum of the created particles in the EL case.

IV. DETAILED ANALYSIS OF PARTICLE SPECTRUM

As shown in [13], the spectrum of created particles has the general feature that np is nearly constant for 0 � p <� 1
and decreases exponentially as e�2�pfor p � 1. Hence the particle spectrum is basically obtained if n0 := np=0 is
known. Note that p = 1 corresponds to the curvature scale of the � = const: hypersurface in the Milne universe. It
should be also noted p = 0 does not corresponds to the zero mode of the � = const: hypersurface but to the mode
with characteristic scale of the curvature as well. Furthermore, if one considers implications of the present analysis
to the one-bubble in
ation scenario, what one wants to know most is the curvature perturbation spectrum on large
scales comparable to the spatial curvature scale, which is described by np at p <� 1. Thus we may focus on the plateau
of np at p <� 1. For de�niteness, we take n0 as the representative value.
For limiting cases in which the argument of the (modi�ed) Bessel functions is very small or large compared to unity,

we can derive a rather simple analytical expression for n0 by using the asymptotic behaviour of the (modi�ed) Bessel
functions which may be found in Ref. [16]. As discussed in the previous section, there are two ways of specifying pa-
rameters of the model. The potential parameters are less directly related to np than the wall con�guration parameters.
Therefore, in what follows, we �rst consider cases with extreme values of the wall con�guration parameters. After
disclosing the relationship between the wall con�guration parameters and the particle spectrum, we then interpret the
results in terms of the original potential parameters by analyzing the relations between these two sets of parameters.
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FIG. 3. The typical shape of the particle spectrum np.

A. n0 as a function of wall con�guration parameters

(i) Thin wall EE case:

We �rst consider the case when ~m�1 and ~m�2 !1, where ~m represents either m, M or �, and (�2 � �1)=�1 � 1,
which corresponds to the thin wall limit. We regard 1= ~m�1 and 1= ~m�2 as small parameters, which we denote by �,
and assume �(�2 � �1) <� 1.
After tedious manipulations, the expansion of Eq. (3.10) with respect to � to O(�) gives

(Mm � �2)T + �(M +m) � 15

8�1

�
M

�
+

�

M

�
(m � �T ) + 15

8�2

�
m

�
+
�

m

�
(M � �T ) = O

�
�2
�
; (4.1)

where

T := tan�(�2 � �1): (4.2)

With the aid of this relation, the particle spectrum at p = 0 given by (3.25) is evaluated as

n0 �
��

M

�
+

�

M

��
1

��1
� 1

��2

���2
exp(�4M�1): (4.3)

Equivalently, again using Eq.(4.1), n0 may be expressed as

n0 �
��

M

�
+

�

M

�
arctan

�
�(M +m)

�2 �Mm

���2
(��1)

4 exp(�4M�1); (4.4)

where arctan takes the value between 0 and �.
One sees that n0 is exponentially suppressed as e�4M�1 , the feature that has been found in the previous analysis of

the thin wall limit [13]. However, one also �nds a large factor (��1)
4 in front, which were absent in the simple model

discussed in [13].

(ii) Boundary between the EE and EL cases:

The boundary between the EE and EL cases is given by the limitM�1 ! 0 and ��1 ! 0. In this case the limit of
either m�2 ! 0 or m�2 !1 can be treated analytically.
As mentioned below Eq. (3.17), for m�2 ! 0, � is �xed as

��2 = j1;1 � 3:8132: (4.5)

Then we obtain

n0 � 1

4

�
k1 +

2

�
ln

�
M

�

��2
; (4.6)

12



where k1 is a numerical factor given by

k1=

�
j1;1N1(j1;1)

�
ln

�
m�2

2

�
+ 


�
+ N0(j1;1)

�.
J0(j1;1)

� �3:9245 ln
�
m�2

2

�
� 2:3929; (4.7)

and 
 � 0:5772 is the Euler constant.
For m�2 !1, � is �xed as

��2 = j2;1 � 5:1356; (4.8)

Then we obtain

n0 � 1

4

�
k2 +

2

�
ln

�
M

�

��2
; (4.9)

where k2 is given by

k2 =
N0(j2;1)

J0(j2;1)
� 2:4602: (4.10)

Thus, in both of the limiting cases, n0 is of order unity unless the ratio M=� or m=� becomes too large or too
small.

(iii) EL case with ��1 !1:

In the EL case with ��1 !1 andM�1 !1, a simple expression for n0 can be obtained for m�2 !1 or m�2 ! 0.
First consider the limit m�2 ! 0. In this case � is given also by Eq. (4.5). After a straightforward calculation, we

then �nd

n0 � k21 + 1

16

�2 +M2

�M
exp(2��1): (4.11)

In the case of the limit m�2 !1, � is given by Eq. (4.8). Then we obtain

n0 � k22 + 1

16

�2 +M2

�M
exp(2��1): (4.12)

Thus in both limits of m�2, the particle spectrum has the exponential factor e2��1 . This suggests that it is a
common factor for the EL case irrespective of the parameters.

Summarizing the above results of analytical tractable cases, we expect that the gross dependence of n0 on the wall
con�guration parameters is

n0 � exp(�4M�1) ; (4.13)

for the EE case, and

n0 � exp(2��1) ; (4.14)

for the EL case.
In order to test our expectation mentioned above, we have numerically evaluated n0 for various values of the wall

con�guration parameters. Figures 4 and 5 show n0= exp(�4M�1) for the EE case and n0= exp(2��1) for the EL case,
respectively, as functions of the parameters M�1 and M�2, for typical ratios of m=M ; m=M = 0:1, 1 and 10. We see
that the approximations as Eqs. (4.13) and (4.14) are better than one might have anticipated except for some special
cases.
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FIG. 4. The contour plots of the particle creation rate np=0 versus M�1 and M�2 �M�1 in the EE case. They are plotted

for a few typical values of m=M , i.e., (a) m=M = 0:1, (b) m=M = 1 and (c) m=M = 10.
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FIG. 5. The contour plots of np=0 versus M�1 and M�2 in the EL case. As before they are plotted for the same typical

values of m=M .

As for the EE case, we see a ditch in the �gure, but it is in some sense super�cial. As is also observed in Fig. 3, there
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are spikes in the spectrum where the particle creation is completely suppressed due to accidental phase coherence.
The locations of the spikes move as the model parameters vary. The ditch appears simply because one of the spikes
passes by p = 0. Thus the particle creation is not really suppressed if the global shape of the spectrum is considered.
When M�1 �M�2 � 1, the particle creation seems to be enhanced compared with that given by Eq. (4.13), but this
is just what is obtained in the case (i) discussed above.
As for the EL case, a small deviation from Eq. (4.14) is observed when M�2 is small. This may be explained as

follows. Since ��2 = O(1) in all the EL cases, �=M must become large as M�2 gets small. Therefore, from the results
presented in (iii), the enhancement can be understood as a result of the factor (�2 +M2)=(�M ). If we analyze n0
more carefully, we �nd a slight enhancement of particle creation whenM�1 � 1 andM�2 � 1. This is the case which
is considered in (ii). Thus this moderate enhancement can be understood as a result of the contribution of the factor
ln (M=�).
Thus we conclude that M�1 and ��1 are the parameters which dominantly determine the particle spectrum np in

almost all the cases.

B. dependence on potential parameters

As we have found how the particle spectrum is determined by the wall con�guration parameters, we now consider
the relation between the shape of the potential and the wall con�guration parameters. From the previous discussion,
we know that n0 is mainly determined by M�1 in the EE case and ��1 in the EL case. Thus what is necessary is
to relate M�1 or ��1 with the potential parameters of our model; m=M , �=M and �2=�1. In order to do so, we will
show that �1 becomes larger (smaller) in the EE (EL) case as �2=�1 increases for �xed mass ratios of m=M and �=M .
Keeping this result in mind, we will then discuss the dependence of the particle creation on the shape of the potential
in detail. Since the EL case turns out to be much easier to analyze than the EE case, we discuss the EL case �rst.

(i) EL case:

Let us consider a modi�ed potential eV which has a smaller value of �2=�1 with �xed mass ratios m=M and �=M .

We associate the tilde with quantities of the modi�ed potential. Thus g�2=�1 < �2=�1. Using the scaling freedom,

we can make eV coincide with the original V for � < �1, as shown in Fig. 6, in which the solid curve represents the
original potential and the dotted curve the modi�ed one. Since we are considering the EL case, the bounce solution
�B(�E ) is entirely contained in the region � < �1. Hence �B(�E ) is not changed by this modi�cation of the potential.
In particular, the �eld value �B(0) at the center of the bubble, which is the initial value for the subsequent motion of
� inside the bubble, is unchanged. Then it is easily understood that �1, which is the value of � when the �eld passes

the junction point � = �1, will become larger for ~V . Thus we have �e�1 > ��1 for g�2=�1 < �2=�1 with �xed mass
ratios m=M and �=M .

f

f
fff f

~

FIG. 6.
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Now let us analyze the relation between the shape of the potential and the particle creation more quantitatively.
It turns out that there exists a more relevant potential parameter than �2=�1 which is more directly related to the
amplitude of particle creation. It is de�ned by

F� :=
�1 � �P

�P � �F
=

M2

�2�
1 +

�2

m2

��
�2

�1
�
�
1 +

M2

�2

�� ; (4.15)

where �P is the value of � at the top of the potential barrier. Note that eF� > F� for g�2=�1 < �2=�1. Also it may be
worthwhile to mention that the ratio of the potential di�erences V (�P )� V (�1) and V (�P ) � V (�F ) is expressed in
terms of F� as

V (�P ) � V (�1)
V (�P )� V (�F )

=

�
1 +

�2

m2

�
F2
�: (4.16)

Eliminating B from the junction conditions (3.14) and (3.16), we �nd R� is expressed as

F� = f(m=�)
I1(��1)

��1
; (4.17)

where

f(x) := � x2

1 + x2
y(x)

J1(y(x))
; (4.18)

and the function y(x), which is ��2 for x = m=�, is implicitly de�ned by

xK3(xy)J2(y) = K2(xy)J3(y): (4.19)

As noted at the end of section 3, subsection A, y varies from j1;1 � 3:8132 to j2;1 � 5:1356 as x varies from zero to
in�nity. Hence we �nd f(x) is always of order unity with its limiting behaviors given by

f(x)!

8>><
>>:
� 2

J0(j1;1)
� 4:966 ; x! 0;

� j2;1

J1(j2;1)
� 15:12 ; x!1:

(4.20)

The function f(x) is plotted in Fig. 7.

FIG. 7. The plot of the function f(x).

17



Now from the analysis given in the previous subsection, we know n0 is of order unity for ��1 ! 0 and enhanced
exponentially as e2��1 for ��1 � 1. We see that this is exactly the behavior of F� seen as a function of ��1,

F� !

8><
>:

1

2
f(m=�) ; ��1 ! 0;

e2��1

2�(��1)3
f(m=�) ; ��1 !1:

(4.21)

Thus in the zeroth order approximation we conclude

n0 � F�; (4.22)

for the EL case where R� is de�ned by Eq. (4.17).

(ii) EE case:

As in the EL case, we �rst consider the reaction of the parameter M�1 by the variation of �2=�1.
The problem to �nd the bounce solution is to �nd a solution of particle motion with �E-dependent friction force

on the inverted potential �V (�) with the release point at �E = 0 somewhere near the true vacuum, as given by the
solid line in Fig. 8. If we choose the release point appropriately, the particle reaches �F at �F !1. We denote this
appropriately chosen release point as �I . Now consider the system with a modi�ed potential which has the same mass
ratios but a larger value of �2=�1. As before, we associate the tilde to denote quantities of the modi�ed potential.

Again using the scaling freedom, we may make e�1 coincide with the original �1 without changingM , m and �. Then

the modi�ed potential eV coincides with the original V for � > �2 as given by the dotted line in Fig. 8.

f  

f
fff f

~
f
~

FIG. 8.

If we release a particle from the same point �I as in the original potential for the case of the potential eV , it cannot
reach the false vacuum e�F . In order to make it reach e�F , the particle must be released from a point � = e�I closer

to the true vacuum, i.e., e�I > �I . Then �1, which is the value of xE at �1, must become larger. Thus we conclude

M e�1 > M�1 for g�2=�1 > �2=�1 with �xed m=M and �=M .
In contrast to the EL case, we were unable to �nd a simple function of the potential parameters which is directly

related to the amplitude of particle creation. This is because the bounce solution in the EE case depends on the mass
at the true vacuum M as well as m and �. Therefore M�1 is generally fully dependent on all the three potential
parameters. However, it is still possible to relate the shape of the potential to the particle creation in a couple of
limiting cases, which we will discuss below.
As noted in the beginning of section 3, �2=�1 is bounded from above by the condition that V (�F ) > V (�T ). For

�2=�1 close to the maximum value, we have M�1 � 1, which is just the thin-wall limit. In this limit, the particle
creation is exponentially suppressed as e�4M�1 . In other word, as the wall radius becomes larger, the quantum state
inside a nucleated bubble becomes closer to the Minkowski vacuum state. In this case, the wall radius is known to be
given by [7]
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�1 � �2 � 3S1=�V; (4.23)

where

S1 :=

Z �T

�F

d�
p
2V (�); (4.24)

and

�V := V (�F ) � V (�T ): (4.25)

Thus the amplitude of particle creation n0 is approximately given by

n0 � exp

�
�12MS1

�V

�
: (4.26)

On the other hand, �2=�1 is bounded also from below in order for the potential barrier to exist. Now as �2=�1
decreases, �1 decreases and before the potential barrier vanishes �1 becomes zero, which is just the boundary of the
EE case and the EL case. Thus in this limit, the analysis of the �1 ! 0 limit of the EL case is also appropriate.
Summarizing the above analyses for the EL and EE cases, we conclude that n0 is approximately determined in

terms of the potential parameters as

n0 �
�
F� ; F� >� 1;
exp(�12MS1=�V ); F� � 1:

(4.27)

Before closing this section, one comment is in order. In this paper, we have considered a potential model with a
constant mass around the true vacuum. However in order for our results to be valid, the mass M (�) on the true
vacuum side is not necessarily strictly constant. The only restriction is that M (�) should vary su�ciently slowly.
Namely if

dM (�)

d�

�
M (�)�M (�) ; (4.28)

the mode function evolves adiabatically and there will be no additional particle creation on the true vacuum side.
Now in a simple version of the one-bubble in
ation scenario, the tunneling �eld also plays the role of the in
aton �eld
inside the bubble, and the mass of the in
aton �eld changes very slowly in the slow rolling phase. Thus our results
are expected to give non-trivial implications to the one-bubble in
ation scenario, at least the e�ect of tunneling to
the spectrum of the in
aton �eld 
uctuations is concerned. We plan to make a detailed investigation of this issue in
a future publication.

V. DISCRETE MODES

So far, we have not carefully investigated the completeness and normalization of the mode functions for the descrip-
tion of a quantum state of the �eld '. In order to specify a quantum state completely, we need a set of all possible
mode functions which have properly normalized Klein-Gordon inner products on a Cauchy surface. However, the
spacetime inside the forward light cone of the center of a bubble, which is described by the Milne universe, does not
contain any Cauchy surface of the whole Minkowski space.
Thus we �rst need to introduce new coordinates which cover the spacelike region outside the forward light cone and

which respect the symmetry of the bounce solution. Such coordinates are known as the (spherical) Rindler coordinates
and the spacetime covered by them is called the Rindler space. The metric of the Rindler space is given by

ds2 = d�2R + �2R

�
�d�2R + cosh2 �Rd


2
(2)

�
; (5.1)

where the �R = const: hypersurface of the Rindler space is a Cauchy surface of the whole Minkowski space. These
coordinates are related to the Milne coordinates as

�R = e��i=2� = �E ; �R = �+
�i

2
: (5.2)
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Now we have to evaluate the Klein-Gordon norms of the mode functions up`m(�; �;
) in the Rindler space. In
order to do so, we need the analytic continuation of up`m to the Rindler space:

up`m =
Gp(�R)

�R
vp`(�R)Y`m(
); (5.3)

where

vp`(�R) = fp`(�R � i�=2) =

�����(ip+ `+ 1)�(�ip + ` + 1)

�(ip)�(�ip)

����
1=2

1p�i cosh �R
P
�`�1=2

ip�1=2 (�i sinh �R): (5.4)

We note that vp`(�R) now plays the role of a positive frequency function for the state je0i. In the same way as
presented in Appendix A of Ref. [15], the Klein-Gordon inner product of up`m on the �R = const: hypersurface can
be evaluated as

hup`m; up0`0m0i := i cosh2 �R

Z
1

0

d�R�R

�
@up`m

@�R
up0`0m0 � up`m

@up0`0m0

@�R

�

= N
(1)
p` N

(2)
pp0 �``0�mm0 ; (5.5)

where

N
(1)
p` = i cosh2 �R

�
@vp`

@�R
vp` � vp` @ vp`

@�R

�
; N

(2)
pp0 =

Z
1

0

d�R

�R
Gp(�R)Gp0(�R): (5.6)

In the above, we have put p0 = p when evaluating N
(1)
p` , anticipating that the factor N

(2)
pp0 should be zero if p 6= p0,

which we will show below. The evaluation of the factor N
(1)
p` is straightforward and we obtain

N
(1)
p` =

2p

�
sinh�p: (5.7)

For p2 and p0
2
> 0 (in fact we have p, p0 > 0), the factor N

(2)
pp0 can be evaluated from the behaviour of Gp(�R) near

the origin alone. In the EE case, noting that Eq. (3.24) implies

Gp(�R) =
c1p � e��p c2p

sinh�p
Iip(M�R)� c1p � e�p c2p

sinh�p
I�ip(M�R); (5.8)

and using the fact that i(c1p � cosh�pc2p) and c2p are real, we obtain

N
(2)
pp0 =

2�(p� p0)
p sinh�p

�jc1pj2 � jc2pj2� : (5.9)

Thus we have

hup`m; up0`0m0 i = 4
�jc1pj2 � jc2pj2�

�
�(p� p0)�``0�mm0 : (5.10)

This agrees with the norm calculated on the � = const: hypersurface in the Milne universe, Eq. (2.29). We can show
the same result holds also in the EL case. The reason why the Klein-Gordon inner product can be evaluated in the
Milne universe, despite the fact that it does not contain any Cauchy surface, is due to the fast fall-o� of the function
vp`(�R) with positive p2 at �R !1. That is, the mode function up`m vanishes fast enough at future null in�nity of
the Minkowski space.
In contrast, any mode function with negative p2 has a divergent Klein-Gordon norm in the Milne universe. When

the Klein-Gordon norm of a mode diverges, the normalized mode function vanishes. Hence it would not contribute
to the quantum 
uctuations of the �eld if it also vanishes fast enough at future null in�nity. However, for p2 < 0, the
fall-o� of a mode function at future null in�nity is not fast enough. Thus, we cannot claim that the Klein-Gordon
norm evaluated in the Milne universe is equivalent to that evaluated on a Cauchy surface. Therefore it sometimes
occurs that some of the modes with negative p2 do contribute to the quantum 
uctuations of the �eld.

Speci�cally, as seen from Eq. (5.8), Gp(�R) with p
2 < 0 has the behavior � �p�

jpj

R + �p�
�jpj

R near the origin �R = 0,
where �p and �p are determined by solving Eq. (2.24) with the boundary condition (2.25). This boundary condition
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is a necessary condition for the normalizability also for the p2 < 0 modes but not a su�cient one. For a mode to be
normalizable, there is an additional condition that �p should vanish. For almost all the modes with negative p2, �p
do not vanish. Hence they do not contribute to the quantum 
uctuations. However, for certain discrete sets of p, �p
may happen to become zero. Then those modes become normalizable. Apparently, they are bound state modes and
cannot be described in the particle picture.
Nevertheless, we can evaluate the contribution of these modes to the two-point function (Wightman function) which

characterizes the quantum 
uctuations of the �eld. Let us denote these discrete values of imaginary p by pn. Since
the Wightman function is given by the summation of products of the mode functions, it can be divided into two parts
as

G+(x; x0) = G+
D(x; x

0) + G+
C(x; x

0): (5.11)

The two parts G+
D and G+

C are the contributions from the discrete modes and the continuous modes, respectively.
They are given by

G+
D(x; x

0) =
X
n`m

�

2pn sinh�pnN
(2)
n

upn`m(x)upn`m(x
0)

=
1

2�2

X
n

sinh jpnj�
4� sin�jpnj

1

N
(2)
n

Gpn(�R)Gpn(�
0

R)

�R�
0

R

; (5.12)

where

N (2)
n :=

Z
1

0

d�R

�R
(Gpn (�R))

2
; (5.13)

and

G+
C(x; x

0) =

Z 1

0

dp
X
`m

�

4(jc1pj2 � jc2pj2)
up`m(x)up`m(x0)

=

Z 1

0

dp
1

8�(jc1pj2 � jc2pj2)
p sin p�

sinh �

Gp(�R)Gp(�
0

R)

�R�
0

R

; (5.14)

where � is the Lorentz invariant distance between x and x0,

cosh � =

�
cosh � cosh�0 � sinh� sinh�0 cos� (in Milne universe),
� sinh�R sinh�0R + cosh �R cosh�0R cos� (in Rindler space),

cos� = cos � cos �0 + sin � sin �0 cos(�� �0): (5.15)

The second equalities of both Eqs. (5.12) and (5.14) are obtained after summation over ` and m, and they manifestly
show the O(3; 1) invariance.
In the present model, there exists at lease one series of such discrete modes. They are related to the perturbations

of the wall location. The radial part of these mode functions is given by the derivative of the bounce solution as

Gwall(�R) = �R
d�B(�R)

d�R
: (5.16)

It is easy to show that this mode function satis�es Eq. (2.24) with p2 = �4. If we put pn = 2i in Eq. (5.12) it
diverges. However the divergence comes from the monopole (` = 0) and dipole (` = 1) parts of these modes, which
just represent translations of the origin of the coordinates (so-called zero modes). In fact it is easy to check that these
modes are represented by linear combinations of d�B=dx

� where x� are the usual Minkowski coordinates. Thus they
should be removed. Then the remaining part of the Wightman function becomes �nite but at the expense of losing
the Lorentz invariance. Using the explicit form of the associated Legendre functions with special values of the indices,

P
�1=2

��1=2(cosh z) =

r
2

� sinh z

sinh �z

�
; (5.17)

P
�3=2

��1=2
(cosh z) =

r
2

� sinh z

� cosh �z � sinh �z coth z

�(�2� 1)
;
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the contribution to the Wightman function from these discrete modes is expressed as

G+
wall(x; x

0) =
_�B(�R) _�B(�

0

R)

4�2N
(2)
wall

�
�
cosh 2�

sinh �
� 11

3
cosh � +

8

3
sinh�R sinh�0R

�
; (5.18)

where

N
(2)
wall =

Z
1

0

d�R�R _�2B(�R): (5.19)

The last term in the square brackets is not Lorentz invariant. However, since the removed monopole and dipole modes
simply represent the global translation of the bubble, this apparent violation of the Lorentz invariance should not
a�ect observable quantities. Focusing on the wall 
uctuations in the Rindler space, this point has been discussed in
detail by Garriga and Vilenkin [17].
In the Milne universe, one can interpret the 
uctuation of the scalar �eld ' as the perturbation of the intrinsic

curvature of the � = const: hypersurface. The scalar-type curvature perturbation is described by a single potential
function R as [18]

� (3)Ri
j =

1

�2

�
�
�
rirj � 1

3
�ijrkrk

�
+

4

3
�ij
�
3�rkrk

��R(x)
=

1

�2

�
�(1 + p2)RY i

j +
4

3
(4 + p2)�ijRY

�
; (5.20)

where ri denotes the covariant derivative with respect to the metric on the unit 3-hyperboloid, and the second line
is the harmonic expansion of the �rst line with Y being the abbreviation for Yp`m(�;
) and Y

i
j being the traceless

tensor harmonics de�ned by

Y i
j =

1

1 + p2

�
rirj �

1

3
�ijrkrk

�
Y =:

1

1 + p2
Di
jY: (5.21)

We note that Y i
j satis�es the equations,

riY
i
j = �2

3

4 + p2

1 + p2
rjY ; rkrkY

i
j = �(7 + p2)Y i

j : (5.22)

By an in�nitesimal coordinate transformation � ! e� = � + T (x), we have

e'(x) = '(x)� _�BT (x); eR(x) = R(x)� 1

�
T (x); (5.23)

on the new hypersurface [18]. Hence setting T = '= _�B, we obtain

eR(x) = � 1

� _�B
'(x); (5.24)

as the curvature perturbation of the � = const: hypersurface.
Now for p2 = �4, one �nds the trace of the curvature perturbation vanishes. Furthermore, from the �rst equation of

(5.22), we see that Y i
j becomes transverse. Thus the p2 = �4 scalar-type curvature perturbation happens to become

transverse-traceless. This suggests that ` = 0 and 1 modes do not contribute to the curvature perturbation and
the term violating the Lorentz invariance in Eq.(5.18) will disappear when the two-point function of the curvature
perturbation is considered. In fact, this can be explicitly demonstrated by operating with Dij on it. Consequently,
we obtain

h� (3)~Ri
j(x)�

(3)~Rk
l (x

0)ip2=�4 =
1

4�2N
(2)
wall�

3�03
Di
jD0k

l

�
�
cosh 2�

sinh �
� 11

3
cosh �

�
; (5.25)

which is manifestly Lorentz covariant.
From the above discussion, it is anticipated that the quantum 
uctuations of the scalar �eld inside the bubble will

be better understood when we include degrees of freedom of the metric perturbation. This point will be disclosed in
the future work.
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Now let us examine if there exist discrete modes other than p = 2i. Since the mode (5.16) has no node, it is the
eigenfunction for Eq. (2.24) with the lowest eigenvalue, i.e., the smallest p2. Hence other possible discrete modes must
have the eigenvalues in the range �4 < p2 < 0 and have at least one or more nodes. Now in the thin-wall limit, it can
be explicitly shown that such modes do not exist. Also in this limit, one �nds the mode function Gp with p = 0 has
one node and diverges to minus in�nity as �R ! 0. Then as we vary the model parameters continuously, the value of
the mode function Gp=0 at �R = 0 should cross zero if there should appear a bound state mode with one node. This
implies the divergence of n0 for a certain set of the model parameters. However, as seen from Figs. 4 and 5, we have
found no divergence of n0. Hence in our model, we conclude that there exist no additional discrete modes other than
those related to the wall 
uctuations.
We will present a detailed analysis of these discrete modes in future publication.

VI. CONCLUSION

In this paper, we have investigated the self-excitation of a scalar �eld in process of its decay from a false vacuum. For
this purpose we have considered a model potential which is piece-wise quadratic, hence allows us analytical treatments.
We have interpreted the resulting quantum state inside a nucleated bubble in the particle creation picture. Then we
have found the following features of particle creation.
When the spacetime region of the bubble wall, which is de�ned as the region in which the mass-squared of the scalar

�eld is negative, is con�ned in the Euclidean region E , the number of created particles per each mode is exponentially
suppressed in the thin-wall limit and at most of order unity unless the mass scale at the true vacuum is exponentially
small compared with that at the top of the potential barrier. On the other hand when the wall region extends to the
Lorentzian region M, i.e., the mass-squared at the center of the bubble is still negative, the particle creation can be
signi�cantly enhanced. In this case, we have derived an approximate formula (4.22) for the particle spectrum as a
function of the model parameters which determine the shape of the potential, where F� is de�ned by Eq.(4.15).
In addition, we have also considered the e�ect of a set of discrete modes which describe the oscillation of the bubble

wall. From a careful analysis of the Klein-Gordon norms, we have argued that these discrete modes do contribute to
the quantum state inside the bubble, though they cannot be interpreted as usual particle modes. However, since the
monopole and dipole components of these modes corresponds to the spacetime translation of the bubble center, we
have argued that a consistent treatment of these modes requires the inclusion of gravitational degrees of freedom into
the analysis simultaneously.
In view of the above considerations, the next step to be taken is to take gravity into account in the background bounce

solution. A framework in this direction has been already done in Ref. [19]. Hence it should be fairly straightforward
to extend the present analysis to the one on the curved spacetime background. Then the second step is to study the
e�ect of gravitational degrees of freedom on the excitation of a tunneling scalar �eld. In this respect, we expect that
a formalism developed in Ref. [20] for dealing with the 
uctuations around the bounce solution with gravity should
be useful. After this second step, the role of the discrete modes will be clearly and unambiguously understood.
Once these issues are settled, we will be able to talk about the quantum state of the scalar �eld inside the bubble

with con�dence. In connection with the one-bubble open in
ation scenario, we will be able to discuss quantitatively
the in
uence of the quantum 
uctuations induced by tunneling on the primordial density perturbations and on the
CMB anisotropies on large angular scales.
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