2,656 research outputs found
Provision of services for rehabilitation of children and adolescents with congenital cardiac disease: a survey of centres for paediatric cardiology in the United Kingdom
A postal questionnaire survey of the 17 centres for paediatric cardiology in the UK investigated the attitudes of staff towards rehabilitation and the current level of provision. The majority of respondents (82%) believed they should provide rehabilitation for their patients, but only one centre had a programme for rehabilitation. Few respondents (18%) believed they were meeting the needs of their patients' for rehabilitation. Major barriers to providing rehabilitation were funding and the wide geographical catchment areas
Nuclear liquid-gas phase transition within the lattice gas model
We study the nuclear liquid-gas phase transition on the basis of a
two-component lattice gas model. A Metropolis type of sampling method is used
to generate microscopic states in the canonical ensemble. The effective
equation of state and fragment mass distributions are evaluated in a wide range
of temperatures and densities. A definition of the phase coexistence region
appropriate for mesoscopic systems is proposed. The caloric curve resulting
from different types of freeze-out conditions are presented.Comment: 13 pages including 4 figure
Frequency-dependent (ac) Conduction in Disordered Composites: a Percolative Study
In a recent paper [Phys. Rev. B{\bf57}, 3375 (1998)], we examined in detail
the nonlinear (electrical) dc response of a random resistor cum tunneling bond
network (, introduced by us elsewhere to explain nonlinear response of
metal-insulator type mixtures). In this work which is a sequel to that paper,
we consider the ac response of the -based correlated () model.
Numerical solutions of the Kirchoff's laws for the model give a power-law
exponent (= 0.7 near ) of the modulus of the complex ac conductance at
moderately low frequencies, in conformity with experiments on various types of
disordered systems. But, at very low frequencies, it gives a simple quadratic
or linear dependence on the frequency depending upon whether the system is
percolating or not. We do also discuss the effective medium approximation
() of our and the traditional random network model, and discuss
their comparative successes and shortcomings.Comment: Revised and reduced version with 17 LaTeX pages plus 8 JPEG figure
Negative specific heat in a thermodynamic model of multifragmentation
We consider a soluble model of multifragmentation which is similar in spirit
to many models which have been used to fit intermediate energy heavy ion
collision data. In this model is always positive but for finite nuclei
can be negative for some temperatures and pressures. Furthermore,
negative values of can be obtained in canonical treatment. One does not
need to use the microcanonical ensemble. Negative values for can persist
for systems as large as 200 paticles but this depends upon parameters used in
the model calculation. As expected, negative specific heats are absent in the
thermodynamic limit.Comment: Revtex, 13 pages including 6 figure
Model of multifragmentation, Equation of State and phase transition
We consider a soluble model of multifragmentation which is similar in spirit
to many models which have been used to fit intermediate energy heavy ion
collision data. We draw a p-V diagram for the model and compare with a p-V
diagram obtained from a mean-field theory. We investigate the question of
chemical instability in the multifragmentation model. Phase transitions in the
model are discussed.Comment: Revtex, 9 pages including 6 figures: some change in the text and Fig.
The pressure of QCD at finite temperatures and chemical potentials
The perturbative expansion of the pressure of hot QCD is computed here to
order g^6ln(g) in the presence of finite quark chemical potentials. In this
process all two- and three-loop one-particle irreducible vacuum diagrams of the
theory are evaluated at arbitrary T and mu, and these results are then used to
analytically verify the outcome of an old order g^4 calculation of Freedman and
McLerran for the zero-temperature pressure. The results for the pressure and
the different quark number susceptibilities at high T are compared with recent
lattice simulations showing excellent agreement especially for the chemical
potential dependent part of the pressure.Comment: 35 pages, 6 figures; text revised, one figure replace
Statistical Models of Nuclear Fragmentation
A method is presented that allows exact calculations of fragment multiplicity
distributions for a canonical ensemble of non-interacting clusters.
Fragmentation properties are shown to depend on only a few parameters.
Fragments are shown to be copiously produced above the transition temperature.
At this transition temperature, the calculated multiplicity distributions
broaden and become strongly super-Poissonian. This behavior is compared to
predictions from a percolation model. A corresponding microcanonical formalism
is also presented.Comment: 12 pages, 5 figure
Calculating the I=2 Pion Scattering Length Using Tadpole Improved Clover Wilson Action on Coarse Anisotropic Lattices
In an exploratory study, using the tadpole improved clover Wilson quark
action on small, coarse and anisotropic lattices, the scattering
length in the I=2 channel is calculated within quenched approximation. A new
method is proposed which enables us to make chiral extrapolation of our lattice
results without calculating the decay constant on the lattice. Finite volume
and finite lattice spacing errors are analyzed and the results are extrapolated
towards the infinite volume and continuum limit. Comparisons of our lattice
results with the new experiment and the results from Chiral Perturbation Theory
are made. Good agreements are found.Comment: 21 pages, 8 figures, latex file typeset with elsart.cls, minor
change
- …