1,362 research outputs found

    Inclusive Photoproduction of Polarized 3P1^3P_1 Quarkonium

    Full text link
    We analyse inclusive photoproduction of polarized 3P1^3P_1 quarkonium in the framework of QCD. To separate nonperturbative and perturbative parts in the density matrix of the produced quarkonium we use a method , which is equivalent to the diagramatic expansion widely used in analysing deeply inelastic scatterings. A systematic expansion in a small velocity vv, with which a heavy quark moves inside the quarkonium in its rest frame, is performed for the nonperturbative parts, and they are expressed as matrix elements in nonrelativistic QCD. At the leading order of vv there are four matrix elements representing nonperturbative physics. The perturbative parts are calculated at the leading order of coupling constants. Some numerical results, especially, numerical results for HERA are given.Comment: 19 pages+7 Figures as one compressed and encoded postcript fil

    DCC Dynamics in (2+1)D-O(3) model

    Get PDF
    The dynamics of symmetry-breaking after a quench is numerically simulated on a lattice for the (2+1)-dimensional O(3) model. In addition to the standard sigma-model with temperature-dependent Phi^4-potential the energy functional includes a four-derivative current-current coupling to stabilize the size of the emerging extended topological textures. The total winding number can be conserved by constraint. As a model for the chiral phase transition during the cooling phase after a hadronic collision this allows to investigate the interference of 'baryon-antibaryon' production with the developing disoriented aligned domains. The growth of angular correlations, condensate, average orientation is studied in dependence of texture size, quench rate, symmetry breaking. The classical dissipative dynamics determines the rate of energy emitted from the relaxing source for each component of the 3-vector field which provides a possible signature for domains of Disoriented Chiral Condensate. We find that the 'pions' are emitted in two distinct pulses; for sufficiently small lattice size the second one carries the DCC signal, but it is strongly suppressed as compared to simultaneous 'sigma'-meson emission. We compare the resulting anomalies in the distributions of DCC pions with probabilities derived within the commonly used coherent state formalism.Comment: 27 pages, 17 figures; several minor insertions in the text; two references adde

    Cosmological implications of a light dilaton

    Get PDF
    Supersymmetric Peccei-Quinn symmetry and string theory predict a complex scalar field comprising a dilaton and an axion. These fields are massless at high energies, but it is known since long that the axion is stabilized in an instanton dominated vacuum. Instantons and axions together also provide a mechanism to stabilize a dilaton, thus accounting for a dilaton as a possible cold dark matter component accompanying the axion. We briefly review the prospects of this scenario and point out further implications.Comment: LaTeX, 9 pages incl. 1 figure, reference adde

    Exact Solutions of Model Hamiltonian Problems with Effective Interactions

    Full text link
    We demonstrate with soluble models how to employ the effective Hamiltonian approach of Lee and Suzuki to obtain all the exact eigenvalues of the full Hamiltonian. We propose a new iteration scheme to obtain the effective Hamiltonian and demonstrate its convergence properties.Comment: 12 pages and 1 figur

    Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    Full text link
    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, MinM_{in}, above the GUT scale, MGUTM_{GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to MinM_{in}, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic (m1/2,m0)(m_{1/2}, m_0) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to MinM_{in}, as we illustrate for several cases with tan(beta)=10 and 55. However, these features do not necessarily disappear at large MinM_{in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos, version to appear in EPJ

    Experimental determination of the effective strong coupling constant

    Get PDF
    We present a first attempt to experimentally extract an effective strong coupling constant that we define to be a low Q2 extension of a previous definition by S. Brodsky et al. following an initial work of G. Grunberg. Using Jefferson Lab data and sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants inferred from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constants and the calculations is not established it is interesting to note that their behaviors are similar.Comment: Published in Physics Letters B 650 4 24

    Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1

    Get PDF
    On the basis of frequentist analyses of experimental constraints from electroweak precision data, g-2, B physics and cosmological data, we investigate the parameters of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking mass parameters, and a model with common non-universal Higgs masses (NUHM1). We present chi^2 likelihood functions for the masses of supersymmetric particles and Higgs bosons, as well as b to s gamma, b to mu mu and the spin-independent dark matter scattering cross section. In the CMSSM we find preferences for sparticle masses that are relatively light. In the NUHM1 the best-fit values for many sparticle masses are even slightly smaller, but with greater uncertainties. The likelihood functions for most sparticle masses are cut off sharply at small masses, in particular by the LEP Higgs mass constraint. Both in the CMSSM and the NUHM1, the coannihilation region is favoured over the focus-point region at about the 3-sigma level, largely but not exclusively because of g-2. Many sparticle masses are highly correlated in both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are accessible to early LHC running. Some slepton and chargino/neutralino masses should be in reach at the ILC. The masses of the heavier Higgs bosons should be accessible at the LHC and the ILC in portions of the preferred regions in the (M_A, tan beta) plane. In the CMSSM, the likelihood function for b to mu mu is peaked close to the Standard Model value, but much larger values are possible in the NUHM1. We find that values of the DM cross section > 10^{-10} pb are preferred in both the CMSSM and the NUHM1. We study the effects of dropping the g-2, b to s gamma, relic density and M_h constraints.Comment: 34 pages, 24 figure

    Formation of extended topological defects during symmetry breaking phase transitions in O(2) and O(3) models

    Get PDF
    The density of extended topological defects created during symmetry-breaking phase transitions depends on the ratio between the correlation length in the symmetric phase near TcT_c and the winding length of the defects as determined by the momentaneous effective action after a typical relaxation time. Conservation of winding number in numerical simulations requires a suitable embedding of the field variables and the appropriate geometrical implementation of the winding density on the discrete lattice. We define a modified Kibble limit for the square lattice and obtain defect densities as functions of winding lengths in O(2) and O(3) models. The latter allows to observe formation of disoriented aligned domains within the easy plane. Their extent is severely limited by the momentaneous defect density during the course of the quench.Comment: 16 pages, 9 figure

    Perturbative Prediction for Parton Fragmentation into Heavy Hadron

    Get PDF
    By expanding functions of parton fragmentation into a heavy hadron in the inverse of the heavy quark mass mQm_Q we attempt to factorize them into perturbative- and nonperturbative parts. In our approach the nonperturbative parts can be defined as matrix elements in heavy quark effective theory, the shape of the functions is predicted by perturbative QCD. In this work we neglect effect at order of mQ2m_Q^{-2} and calculate the perturbative parts at one-loop level for heavy quark- and gluon fragmentation. We compare our results from leading log approximation with experimental results from e+ee^+e^- colliders and find a deviation below or at 10% level. Adding effect of higher order in αs\alpha_s it can be expected to reduce the deviation. The size of matrix elements appearing at the order we consider for several types of heavy hadrons is determined.Comment: 21 pages + 3 pages figures, plain te

    Phenomenology of GUT-less Supersymmetry Breaking

    Get PDF
    We study models in which supersymmetry breaking appears at an intermediate scale, M_{in}, below the GUT scale. We assume that the soft supersymmetry-breaking parameters of the MSSM are universal at M_{in}, and analyze the morphology of the constraints from cosmology and collider experiments on the allowed regions of parameter space as M_{in} is reduced from the GUT scale. We present separate analyses of the (m_{1/2},m_0) planes for tan(beta)=10 and tan(beta)=50, as well as a discussion of non-zero trilinear couplings, A_0. Specific scenarios where the gaugino and scalar masses appear to be universal below the GUT scale have been found in mirage-mediation models, which we also address here. We demand that the lightest neutralino be the LSP, and that the relic neutralino density not conflict with measurements by WMAP and other observations. At moderate values of M_{in}, we find that the allowed regions of the (m_{1/2},m_0) plane are squeezed by the requirements of electroweak symmetry breaking and that the lightest neutralino be the LSP, whereas the constraint on the relic density is less severe. At very low M_{in}, the electroweak vacuum conditions become the dominant constraint, and a secondary source of astrophysical cold dark matter would be necessary to explain the measured relic density for nearly all values of the soft SUSY-breaking parameters and tan(beta). We calculate the neutralino-nucleon cross sections for viable scenarios and compare them with the present and projected limits from direct dark matter searches.Comment: 35 pages, 9 figures; typos corrected, references adde
    corecore