52 research outputs found

    Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty

    Get PDF
    Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections

    Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides

    No full text
    The question of how stable the climate in Antarctica has been during the last few million years compared to the rest of the planet is still controversial. This study attempts to add new information to the discussion by reconstructing the timing and spatial extent of glacial advances in northern Victoria Land over tens of thousands to millions of years. In Terra Nova Bay region, surface exposure ages and erosion rates of glacially rounded bedrock and glacial erratics have been determined using the cosmogenic nuclides 3He, 10Be and 21Ne. Three morphological units have been analysed. They yield minimum ages of 11 to 34 ka, 309 ka, and 2.6 Ma, respectively. Erosion rates were as low as 20 cm Ma-1 since middle Pliocene time. Taking erosion into account, the oldest surface is 5.3 Ma old. Pleistocene glacier advances had considerable extent, reaching up to 780 m above modern ice levels, but have been restricted to the valleys since at least mid-Pliocene. The existence of landscapes of mid-Pliocene age in northern Victoria Land implies that the climatic stability of the McMurdo Dry Valleys is not unique within the Transantarctic Mountains, but rather the expression of a constantly cold and hyperarid climate regime in entire Victoria Land

    Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein

    Get PDF
    The Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus that causes severe and often fatal respiratory disease in humans. Efforts to develop antibody-based therapies have focused on neutralizing antibodies that target the receptor binding domain of the viral spike protein thereby blocking receptor binding. Here, we developed a set of human monoclonal antibodies that target functionally distinct domains of the MERS-CoV spike protein. These antibodies belong to six distinct epitope groups and interfere with the three critical entry functions of the MERS-CoV spike protein: sialic acid binding, receptor binding and membrane fusion. Passive immunization with potently as well as with poorly neutralizing antibodies protected mice from lethal MERS-CoV challenge. Collectively, these antibodies offer new ways to gain humoral protection in humans against the emerging MERS-CoV by targeting different spike protein epitopes and functions
    corecore