378 research outputs found
A Matrix Model for the Null-Brane
The null-brane background is a simple smooth 1/2 BPS solution of string
theory. By tuning a parameter, this background develops a big crunch/big bang
type singularity. We construct the DLCQ description of this space-time in terms
of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix
description provides a non-perturbative framework in which the fate of both
(null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde
A Matrix Big Bang
The light-like linear dilaton background represents a particularly simple
time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten
dimensions. Its lift to M-theory, as well as its Einstein frame metric, are
singular in the sense that the geometry is geodesically incomplete and the
Riemann tensor diverges along a light-like subspace of codimension one. We
study this background as a model for a big bang type singularity in string
theory/M-theory. We construct the dual Matrix theory description in terms of a
(1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given
by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a
framework in which the physics of the singularity appears to be under control.Comment: 25 pages, LaTeX; v2: discussion of singularity of Einstein frame
metric added, references adde
Extramedullary Hematopoiesis Generates Ly-6C(high) Monocytes That Infiltrate Atherosclerotic Lesions
BACKGROUND: Atherosclerotic lesions are believed to grow via the recruitment of bone marrow-derived monocytes. Among the known murine monocyte subsets, Ly-6C(high) monocytes are inflammatory, accumulate in lesions preferentially, and differentiate. Here we hypothesized that the bone marrow outsources the production of Ly-6C(high) monocytes during atherosclerosis. METHODS AND RESULTS: Using murine models of atherosclerosis and fate-mapping approaches, we show that hematopoietic stem and progenitor cells (HSPC) progressively relocate from the bone marrow to the splenic red pulp where they encounter GM-CSF and IL-3, clonally expand, and differentiate to Ly-6C(high) monocytes. Monocytes born in such extramedullary niches intravasate, circulate, and accumulate abundantly in atheromata. Upon lesional infiltration, Ly-6C(high) monocytes secrete inflammatory cytokines, reactive oxygen species, and proteases. Eventually, they ingest lipids and become foam cells. CONCLUSIONS: Our findings indicate that extramedullary sites supplement the bone marrow’s hematopoietic function by producing circulating inflammatory cells that infiltrate atherosclerotic lesions
Shear yielding of amorphous glassy solids: Effect of temperature and strain rate
We study shear yielding and steady state flow of glassy materials with
molecular dynamics simulations of two standard models: amorphous polymers and
bidisperse Lennard-Jones glasses. For a fixed strain rate, the maximum shear
yield stress and the steady state flow stress in simple shear both drop
linearly with increasing temperature. The dependence on strain rate can be
described by a either a logarithm or a power-law added to a constant. In marked
contrast to predictions of traditional thermal activation models, the rate
dependence is nearly independent of temperature. The relation to more recent
models of plastic deformation and glassy rheology is discussed, and the
dynamics of particles and stress in small regions is examined in light of these
findings
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Wetting films on chemically heterogeneous substrates
Based on a microscopic density functional theory we investigate the
morphology of thin liquidlike wetting films adsorbed on substrates endowed with
well-defined chemical heterogeneities. As paradigmatic cases we focus on a
single chemical step and on a single stripe. In view of applications in
microfluidics the accuracy of guiding liquids by chemical microchannels is
discussed. Finally we give a general prescription of how to investigate
theoretically the wetting properties of substrates with arbitrary chemical
structures.Comment: 56 pages, RevTeX, 20 Figure
Peak Stir Zone Temperatures during Friction Stir Processing
The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 ⁰Cto 1015 ⁰C (0.90 to 0.97 TMelt) and were not affected by preheating to 400⁰C, although the dwell time above 900 ⁰C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement
A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task
Hair fiber characteristics and methods to evaluate hair physical and mechanical properties
In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers
In addition to reducing fracture risk, zoledronic acid has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronic acid could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronic acid killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronic acid or vehicle for 8 weeks, zoledronic acid significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronic acid demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronic acid, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronic acid significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronic acid has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo. These data point to the need for additional studies testing zoledronic acid and/or other bisphosphonate derivatives for senotherapeutic efficac
- …
