844 research outputs found

    Thermodynamic relations in a driven lattice gas: numerical exprements

    Full text link
    We explore thermodynamic relations in non-equilibrium steady states with numerical experiments on a driven lattice gas. After operationally defining the pressure and chemical potential in the driven lattice gas, we confirm numerically the validity of the integrability condition (the Maxwell relation) for the two quantities whose values differ from those for an equilibrium system. This implies that a free energy function can be constructed for the non-equilibrium steady state that we consider. We also investigate a fluctuation relation associated with this free energy function. Our result suggests that the compressibility can be expressed in terms of density fluctuations even in non-equilibrium steady states.Comment: 4 pages, 4 figure

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle

    Electroweak Precision Constraints on the Littlest Higgs Model with T Parity

    Full text link
    We compute the leading corrections to the properties of W and Z bosons induced at the one-loop level in the SU(5)/SO(5) Littlest Higgs model with T parity, and perform a global fit to precision electroweak data to determine the constraints on the model parameters. We find that a large part of the model parameter space is consistent with data. Values of the symmetry breaking scale as low as 500 GeV are allowed, indicating that no significant fine tuning in the Higgs potential is required. We identify a region within the allowed parameter space in which the lightest T-odd particle, the partner of the hypercharge gauge boson, has the correct relic abundance to play the role of dark matter. In addition, we find that a consistent fit to data can be obtained for large values of the Higgs mass, up to 800 GeV, due to the possibility of a partial cancellation between the contributions to the T parameter from Higgs loops and new physics.Comment: 23 pages, 9 figures. Minor correction

    An integrated approach to modelling the fluid-structure interaction of a collapsible tube

    Get PDF
    The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality

    The Intermediate Higgs

    Full text link
    Two paradigms for the origin of electroweak superconductivity are a weakly coupled scalar condensate, and a strongly coupled fermion condensate. The former suffers from a finetuning problem unless there are cancelations to radiative corrections, while the latter presents potential discrepancies with precision electroweak physics. Here we present a framework for electroweak symmetry breaking which interpolates between these two paradigms, and mitigates their faults. As in Little Higgs theories, the Higgs is a pseudo-Nambu Goldstone boson, potentially composite. The cutoff sensitivity of the one loop top quark contribution to the effective potential is canceled by contributions from additional vector-like quarks, and the cutoff can naturally be higher than in the minimal Standard Model. Unlike the Little Higgs models, the cutoff sensitivity from one loop gauge contributions is not canceled. However, such gauge contributions are naturally small as long as the cutoff is below 6 TeV. Precision electroweak corrections are suppressed relative to those of Technicolor or generic Little Higgs theories. In some versions of the intermediate scenario, the Higgs mass is computable in terms of the masses of these additional fermions and the Nambu-Goldstone Boson decay constant. In addition to the Higgs, new scalar and pseudoscalar particles are typically present at the weak scale

    A Composite Little Higgs Model

    Full text link
    We describe a natural UV complete theory with a composite little Higgs. Below a TeV we have the minimal Standard Model with a light Higgs, and an extra neutral scalar. At the TeV scale there are additional scalars, gauge bosons, and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass squared parameter, without finetuning, occurs due to a softly broken shift symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale the theory has new strongly coupled interactions. A perturbatively renormalizable UV completion, with softly broken supersymmetry at 10 TeV is explicitly worked out. Our theory contains new particles which are odd under an exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is likely to be a feature of many theories of new TeV scale physics. The lightest parity odd particle, or "LPOP", is most likely a neutral fermion, and may make a good dark matter candidate, with similar experimental signatures to the neutralino of the MSSM. We give a general effective field theory analysis of the calculation of corrections to precision electroweak observables.Comment: 28 page

    I need an exact margin measurement for this basal cell carcinoma!

    Get PDF
    Pathology laboratories are required to determine or estimate the measurement uncertainty for all quantitative results, but there is no literature on the uncertainty in margin measurements for skin cancer excisions. Six pathologists measured 4–14 histological margins in each of 10 basal cell carcinoma

    The Littlest Higgs in Anti-de Sitter Space

    Full text link
    We implement the SU(5)/SO(5) littlest Higgs theory in a slice of 5D Anti-de Sitter space bounded by a UV brane and an IR brane. In this model, there is a bulk SU(5) gauge symmetry that is broken to SO(5) on the IR brane, and the Higgs boson is contained in the Goldstones from this breaking. All of the interactions on the IR brane preserve the global symmetries that protect the Higgs mass, but a radiative potential is generated through loops that stretch to the UV brane where there are explicit SU(5) violating boundary conditions. Like the original littlest Higgs, this model exhibits collective breaking in that two interactions must be turned on in order to generate a Higgs potential. In AdS space, however, collective breaking does not appear in coupling constants directly but rather in the choice of UV brane boundary conditions. We match this AdS construction to the known low energy structure of the littlest Higgs and comment on some of the tensions inherent in the AdS construction. We calculate the 5D Coleman-Weinberg effective potential for the Higgs and find that collective breaking is manifest. In a simplified model with only the SU(2) gauge structure and the top quark, the physical Higgs mass can be of order 200 GeV with no considerable fine tuning (25%). We sketch a more realistic model involving the entire gauge and fermion structure that also implements T-parity, and we comment on the tension between T-parity and flavor structure.Comment: 42 pages, 7 figures, 3 tables; v2: minor rewording, JHEP format; v3: to match JHEP versio

    Galaxy rotation curves: the effect of j x B force

    Full text link
    Using the Galaxy as an example, we study the effect of j x B force on the rotational curves of gas and plasma in galaxies. Acceptable model for the galactic magnetic field and plausible physical parameters are used to fit the flat rotational curve for gas and plasma based on the observed baryonic (visible) matter distribution and j x B force term in the static MHD equation of motion. We also study the effects of varied strength of the magnetic field, its pitch angle and length scale on the rotational curves. We show that j x B force does not play an important role on the plasma dynamics in the intermediate range of distances 6-12 kpc from the centre, whilst the effect is sizable for larger r (r > 15 kpc), where it is the most crucial.Comment: Accepted for publication in Astrophysics & Space Science (final printed version, typos in proofs corrected
    • …
    corecore