69 research outputs found

    Influence of grain-refiner addition on the morphology of fe-bearing intermetallics in a semi-solid processed Al-Mg-Si alloy

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013The three-dimensional morphologies of the Fe-bearing intermetallics in a semisolid-processed Al-Mg-Si alloy were examined after extracting the intermetallics. α -AlFeSi and β-AlFeSi are the major Fe-bearing intermetallics. Addition of Al-Ti-B grain refiner typically promotes β-AlFeSi formation. β-AlFeSi was observed with a flat, plate-like morphology with angular edges in the alloy with and without grain refiner, whereas α -AlFeSi was observed as "flower"-like morphology in the alloy with grain refiner. © 2013 The Minerals, Metals & Materials Society and ASM International

    Effect of Phosphorus and Strontium Additions on Formation Temperature and Nucleation Density of Primary Silicon in Al-19 Wt Pct Si Alloy and Their Effect on Eutectic Temperature

    Get PDF
    The influence of P and Sr additions on the formation temperature and nucleation density of primary silicon in Al-19 wt pct Si alloy has been determined, for small volumes of melt solidified at cooling rates _T of ~0.3 and 1 K/s. The proportion of ingot featuring primary silicon decreased progressively with increased Sr addition, which also markedly reduced the temperature for first formation of primary silicon and the number of primary silicon particles per unit volume �Nv: When combined with previously published results, the effects of amount of P addition and cooling rate on �Nv are in reasonable accord with �Nv� _T ¼ ðp=6fÞ1=2 109 [250 � 215 (wt pct P)0.17]�3, where �Nv is in mm�3, _T is in K/s, and f is volume fraction of primary silicon. Increased P addition reduces the eutectic temperature, while increased Sr appears to generate a minimum in eutectic temperature at about 100 ppmw Sr

    Extragalactic Relativistic Jets and Nuclear Regions in Galaxies

    Get PDF
    Past years have brought an increasingly wider recognition of the ubiquity of relativistic outflows (jets) in galactic nuclei, which has turned jets into an effective tool for investigating the physics of nuclear regions in galaxies. A brief summary is given here of recent results from studies of jets and nuclear regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B. Leibundgut (Springer: Heidelberg 2006

    Radio and γ-ray activity in the jet of the blazar S5 0716+714

    Get PDF
    We explore the connection between the γ-ray and radio emission in the jet of the blazar 0716+714 by using 15, 37, and 230 GHz radio and 0.1–200 GeV γ-ray light curves spanning 10.5 yr (2008–2019). We find significant positive and negative correlations between radio and γ-ray fluxes in different time ranges. The time delays between radio and γ-ray emission suggest that the observed γ-ray flares originated from multiple regions upstream of the radio core, within a few parsecs from the central engine. Using time-resolved 43 GHz Very Long Baseline Array maps we identified 14 jet components moving downstream along the jet. Their apparent speeds range from 6c to 26c, and they show notable variations in their position angles upstream from the stationary component (∼0.53 mas from the core). The brightness temperature declines as a function of distance from the core according to a power law that becomes shallower at the location of the stationary component. We also find that the periods at which significant correlations between radio and γ-ray emission occur overlap with the times when the jet was oriented to the north. Our results indicate that the passage of a propagating disturbance (or shock) through the radio core and the orientation of the jet might be responsible for the observed correlation between the radio and γ-ray variability. We present a scenario that connects the positive correlation and the unusual anticorrelation by combining the production of a flare and a dip at γ-rays by a strong moving shock at different distances from the jet apex.https://iopscience.iop.org/article/10.3847/1538-4357/ac31b4/pdfPublished versio

    Detection of the blazar S4 0954+65 at very-high-energy with the MAGIC telescopes during an exceptionally high optical state

    Get PDF
    The very high energy (VHE ¿ 100 GeV) -ray MAGIC observations of the blazar S4 0954+65, were triggered by an exceptionally high flux state of emission in the optical. This blazar has a disputed redshift of z = 0.368 or z ¿ 0.45 and an uncertain classification among blazar subclasses. The exceptional source state described here makes for an excellent opportunity to understand physical processes in the jet of S4 0954+65 and thus contribute to its classification. Methods. We investigated the multiwavelength (MWL) light curve and spectral energy distribution (SED) of the S4 0954+65 blazar during an enhanced state in February 2015 and have put it in context with possible emission scenarios. We collected photometric data in radio, optical, X-ray, and ¿-ray. We studied both the optical polarization and the inner parsec-scale jet behavior with 43 GHz data. Results. Observations with the MAGIC telescopes led to the first detection of S4 0954+65 at VHE. Simultaneous data with Fermi-LAT at high energy ¿-ray(HE, 100 MeV < E < 100 GeV) also show a period of increased activity. Imaging at 43 GHz reveals the emergence of a new feature in the radio jet in coincidence with the VHE flare. Simultaneous monitoring of the optical polarization angle reveals a rotation of approximately 100. Conclusions. The high emission state during the flare allows us to compile the simultaneous broadband SED and to characterize it in the scope of blazar jet emission models. The broadband spectrum can be modeled with an emission mechanism commonly invoked for flat spectrum radio quasars (FSRQs), that is, inverse Compton scattering on an external soft photon field from the dust torus, also known as external Compton. The light curve and SED phenomenology is consistent with an interpretation of a blob propagating through a helical structured magnetic field and eventually crossing a standing shock in the jet, a scenario typically applied to FSRQs and low-frequency peaked BL Lac objects (LBL). © ESO 2018.The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq, and FAPERJ. IA acknowledges support by a Ramón y Cajal grant of the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain. The research at the IAA–CSIC was supported in part by the MINECO through grants AYA2016–80889–P, AYA2013–40825–P, and AYA2010–14844, and by the regional government of Andalucía through grant P09–FQM–4784.Peer Reviewe

    The high activity of 3C 454.3 in autumn 2007: Monitoring by the WEBT during the AGILE detection

    Get PDF
    The quasar-type blazar 3C 454.3 underwent a phase of high activity in summer and autumn 2007, which was intensively monitored in the radio-to-optical bands by the Whole Earth Blazar Telescope (WEBT). The gamma-ray satellite AGILE detected this source first in late July, and then in November-December 2007. In this letter we present the multifrequency data collected by the WEBT and collaborators during the second AGILE observing period, complemented by a few contemporaneous data from UVOT onboard the Swift satellite. The aim is to trace in detail the behaviour of the synchrotron emission from the blazar jet, and to investigate the contribution from the thermal emission component. Optical data from about twenty telescopes have been homogeneously calibrated and carefully assembled to construct an R-band light curve containing about 1340 data points in 42 days. This extremely well-sampled optical light curve allows us to follow the dramatic flux variability of the source in detail. In addition, we show radio-to-UV spectral energy distributions (SEDs) at different epochs, which represent different brightness levels. In the considered period, the source varied by 2.6 mag in a couple of weeks in the R band. Many episodes of fast (i.e. intranight) variability were observed, most notably on December 12, when a flux increase of about 1.1 mag in 1.5 hours was detected, followed by a steep decrease of about 1.2 mag in 1 hour. The contribution by the thermal component is difficult to assess, due to the uncertainties in the Galactic, and possibly also intrinsic, extinction in the UV band. However, polynomial fitting of radio-to-UV SEDs reveals an increasing spectral bending going towards fainter states, suggesting a UV excess likely due to the thermal emission from the accretion disc

    The structure and emission model of the relativistic jet in the quasar 3C279 inferred from radio to high-energy γ-ray observations in 2008-2010

    Get PDF
    We present time-resolved broadband observations of the quasar 3C279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported γ-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the γ-ray emission by about 10days. X-ray observations reveal a pair of "isolated" flares separated by 90 days, with only weak γ-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the γ-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the γ-ray flaring event by a shift of its location from 1pc to 4pc from the central black hole. On the other hand, if the γ-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission. © 2012. The American Astronomical Society. All rights reserved.

    The GASP-WEBT monitoring of 3C 454.3 during the 2008 optical-to-radio and γ-ray outburst

    Get PDF
    Since 2001, the radio quasar 3C 454.3 has undergone a period of high optical activity, culminating in the brightest optical state ever observed, during the 2004-2005 outburst. The Whole Earth Blazar Telescope (WEBT) consortium has carried out several multifrequency campaigns to follow the source behaviour. The GLAST-AGILE Support Program (GASP) was born from the WEBT to provide long-term continuous optical-to-radio monitoring of a sample of gamma-loud blazars, during the operation of the AGILE and GLAST (now known as Fermi GST) gamma-ray satellites. The main aim is to shed light on the mechanisms producing the high-energy radiation, through correlation analysis with the low-energy emission. Thus, since 2008 the monitoring task on 3C 454.3 passed from the WEBT to the GASP, while both AGILE and Fermi detected strong gamma-ray emission from the source. We present the main results obtained by the GASP at optical, mm, and radio frequencies in the 2008-2009 season, and compare them with the WEBT results from previous years. An optical outburst was observed to peak in mid July 2008, when Fermi detected the brightest gamma-ray levels. A contemporaneous mm outburst maintained its brightness for a longer time, until the cm emission also reached the maximum levels. The behaviour compared in the three bands suggests that the variable relative brightness of the different-frequency outbursts may be due to the changing orientation of a curved inhomogeneous jet. The optical light curve is very well sampled during the entire season, which is also well covered by the various AGILE and Fermi observing periods. The relevant cross-correlation studies will be very important in constraining high-energy emission models

    Multiwavelength behaviour of the blazar 3C 279: decade-long study from γ-ray to radio

    Get PDF
    We report the results of decade-long (2008–2018) γ-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ-ray light curves correlate well, with no delay ≳ 3 h, implying general cospatiality of the emission regions. The γ-ray–optical flux–flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ-ray variability on very short time-scales. The Mg ii emission line flux in the ‘blue’ and ‘red’ wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet.First author draf

    AGILE detection of a rapid γ-ray flare from the blazar PKS 1510-089 during the GASP-WEBT monitoring

    Get PDF
    We report the detection by the AGILE satellite of a rapid gamma-ray flare from the powerful gamma-ray quasar PKS 1510-089, during a pointing centered on the Galactic Center region from 1 March to 30 March 2008. This source has been continuosly monitored in the radio-to-optical bands by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). Moreover, the gamma-ray flaring episode triggered three ToO observations by the Swift satellite in three consecutive days, starting from 20 March 2008. In the period 1-16 March 2008, AGILE detected gamma-ray emission from PKS 1510-089 at a significance level of 6.2-sigma with an average flux over the entire period of (84 +/- 17) x 10^{-8} photons cm^{-2} s^{-1} for photon energies above 100 MeV. After a predefined satellite re-pointing, between 17 and 21 March 2008, AGILE detected the source at a significance level of 7.3-sigma, with an average flux (E > 100 MeV) of (134 +/- 29) x 10^{-8} photons cm^{-2} s^{-1} and a peak level of (281 +/- 68) x 10^{-8} photons cm^{-2} s^{-1} with daily integration. During the observing period January-April 2008, the source also showed an intense and variable optical activity, with several flaring episodes and a significant increase of the flux was observed at millimetric frequencies. Moreover, in the X-ray band the Swift/XRT observations seem to show an harder-when-brighter behaviour of the source spectrum. The spectral energy distribution of mid-March 2008 is modelled with a homogeneous one-zone synchrotron self Compton emission plus contributions from inverse Compton scattering of external photons from both the accretion disc and the broad line region. Indeed, some features in the optical-UV spectrum seem to indicate the presence of Seyfert-like components, such as the little blue bump and the big blue bump
    corecore