41 research outputs found

    Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer’s Disease

    Get PDF
    SummaryLipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer’s disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer’s disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs

    Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite

    Full text link
    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N3+ ions of energy 24 keV in the fluences of 1 x 10(15), 5 x 10(15) and 1 x 10(16) ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.G.M.S. acknowledges CSIR, India (Grant no: 09/468 (0474)/2013-EMR-I) and S.N.K. thanks the award of Erasmus-Mundus Svaagata for providing financial support to carry out this research. G.M.S., N.S. and S.N.K. acknowledge the support of UGC National facility for characterization facility. J.A.G.T. acknowledges the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through the project DPI2015-65401-C3-2-R (including the FEDER financial support). CIBER-BBN, Spain is an initiative funded by the VI National R&D Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. AFM was conducted by the microscopy service of the UPV, whose advice was greatly appreciated.Shanthini, GM.; Sakthivel, N.; Menon, R.; Nabhiraj, PY.; Gómez-Tejedor, JA.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.... (2016). Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite. Carbohydrate Polymers. 153:619-630. https://doi.org/10.1016/j.carbpol.2016.08.016S61963015

    Inverse Gaussian K-Distributions

    No full text
    K-distributions corresponding to Malkmus' narrow band model are inverse Gaussian distributions. Inverse Gaussian theory developments are therefore directly relevant to gas radiative transfer modeling. The present text illustrates some significant benefits that could be made from this observation : i) k-distribution formulations are simplified, ii) numerical integration procedures can be optimized for each new configuration type, iii) frequently encountered integrals can be solved analyticaly and numerical integrations can be avoided. This last point is illustrated with the compuation of infra-red cooling rates in panetary atmospheres. 1 Introduction Malkmus' narrow band model [1] has become a common tool for modeling gas radiation. It is a two parameters model for the average transmission function of a gas columun of length l over a narrow spectral interval : ø(l) = 1 \Delta Z \Delta exp(\Gammak l)d = exp [OE \Gamma OE (l)] (1) with OE (l) = OE(1 + 2¯l=OE) 1=2 (2) The ..

    Causes and impacts of changes in the Arctic freshwater budget in the 20th and 21st centuries in an AOGCM

    Get PDF
    The fourth version of the atmosphere-ocean general circulation (AOGCM) model developed at the Institut Pierre-Simon Laplace (IPSL-CM4) is used to investigate the mechanisms influencing the Arctic freshwater balance in response to anthropogenic greenhouse gas forcing. The freshwater influence on the interannual variability of deep winter oceanic convection in the Nordic Seas is also studied on the basis of correlation and regression analyses of detrended variables. The model shows that the Fram Strait outflow, which is an important source of freshwater for the northern North Atlantic, experiences a rapid and strong transition from a weak state toward a relatively strong state during 1990-2010. The authors propose that this climate shift is triggered by the retreat of sea ice in the Barents Sea during the late twentieth century. This sea ice reduction initiates a positive feedback in the atmosphere-sea ice-ocean system that alters both the atmospheric and oceanic circulations in the Greenland-Iceland-Norwegian (GIN)-Barents Seas sector. Around year 2080, the model predicts a second transition threshold beyond which the Fram Strait outflow is restored toward its original weak value. The long-term freshening of the GIN Seas is invoked to explain this rapid transition. It is further found that the mechanism of interannual changes in deep mixing differ fundamentally between the twentieth and twenty-first centuries. This difference is caused by the dominant influence of freshwater over the twenty-first century. In the GIN Seas, the interannual changes in the liquid freshwater export out of the Arctic Ocean through Fram Strait combined with the interannual changes in the liquid freshwater import from the North Atlantic are shown to have a major influence in driving the interannual variability of the deep convection during the twenty-first century. South of Iceland, the other region of deep water renewal in the model, changes in freshwater import from the North Atlantic constitute the dominant forcing of deep convection on interannual time scales over the twenty-first century

    A boundary-based net-exchange Monte Carlo method for absorbing and scattering thick media

    No full text
    International audienceA boundary-based net-exchange Monte Carlo method was introduced in [1] that allows to bypass the difficulties encountered by standard Monte Carlo algorithms in the limit of optically thick absorption (and/or for quasi-isothermal configurations). With the present paper, this method is extended to scattering media. Developments are fully 3D, but illustrations are presented for plane parallel configuration. Compared to standard Monte Carlo algorithms, convergence qualities have been improved over a wide range of absorption and scattering optical thicknesses. The proposed algorithm still encounters a convergence difficulty in the case of optically thick, highly scattering media

    Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Get PDF
    International audienceThis paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate. The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m -2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m -2). The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8µg (SO 4) m -3 in our model). The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate simulations. We present other methods that are simpler to implement in a coupled chemistry/climate model and that offer the possibility to assess radiative forcing. © 2012 Author(s)

    Longwave radiative analysis of cloudy scattering atmospheres using a Net Exchange Formulation

    No full text
    International audienceThe Net Exchange Formulation (NEF) is an alternative to the usual radiative transfer equation. It was proposed in 1967 by Green [1] for atmospheric sciences and by Hottel [2] for engineering sciences. Until now, the NEF has been used only in a very few cases for atmospheric studies. Recently we have developped a longwave radiative code based on this formulation for a GCM of the Mars planet. Here, we will present results for the Earth atmosphere, obtained with a Monte Carlo Method based on the NEF. In this method, fluxes are not addressed any more. The basic variables are the net exchange rates (NER) between each pair of atmospheric layer (i, j), i.e. the radiative power emitted by i and absorbed by j minus the radiative power emitted by j and absorbed by i. The graphical representation of the NER matrix highlights the radiative exchanges that dominate the radiative budget of the atmosphere and allows one to have a very good insight of the radiative exchanges. Results will be presented for clear sky atmospheres with Mid-Latitude Summer and Sub-Arctic Winter temperature profiles, and for the same atmospheres with three different types of clouds. The effect of scattering on longwave radiative exchanges will also be analysed
    corecore