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SUMMARY

Lipid metabolism is fundamental for brain develop-
ment and function, but its roles in normal and patho-
logical neural stem cell (NSC) regulation remain
largely unexplored. Here, we uncover a fatty acid-
mediated mechanism suppressing endogenous
NSC activity in Alzheimer’s disease (AD). We found
that postmortem AD brains and triple-transgenic Alz-
heimer’s disease (3xTg-AD) mice accumulate neutral
lipids within ependymal cells, the main support cell
of the forebrain NSC niche. Mass spectrometry
and microarray analyses identified these lipids as
oleic acid-enriched triglycerides that originate from
niche-derived rather than peripheral lipidmetabolism
defects. In wild-type mice, locally increasing oleic
acid was sufficient to recapitulate the AD-associated
ependymal triglyceride phenotype and inhibit NSC
proliferation. Moreover, inhibiting the rate-limiting
enzyme of oleic acid synthesis rescued proliferative
defects in both adult neurogenic niches of 3xTg-AD
mice. These studies support a pathogenic mecha-
nismwhereby AD-induced perturbation of niche fatty
acid metabolism suppresses the homeostatic and
regenerative functions of NSCs.

INTRODUCTION

Preservation of stem cell activity within adult tissues is essential

for maintaining tissue structure and function. In the brain, exper-

imental inhibition of neural stem cell (NSC) activity leads to def-

icits in learning and memory, mood, and stress regulation

(Imayoshi et al., 2008; Sakamoto et al., 2014; Sakamoto et al.,

2011; Snyder et al., 2001). In addition, following neural damage,

NSC-derived progeny are re-directed to areas of degeneration,

where they are involved in wound healing and cell replacement
Ce
and can serve as a target for therapeutic manipulations (Benner

et al., 2013; de Chevigny et al., 2008; Erlandsson et al., 2011;

Kolb et al., 2007). NSC activity decreases naturally during aging

and is dysregulated in models of neurodegenerative diseases,

suggesting an involvement in aging- and disease-associated

cognitive deficits (Bouab et al., 2011; Demars et al., 2010; Ham-

ilton et al., 2010; Hamilton et al., 2013; Lazarov and Marr, 2010;

Lazarov et al., 2010). Consistent with this, disturbances in neuro-

genesis have been reported in Alzheimer’s disease (AD) patients

(Crews et al., 2010; Perry et al., 2012; Ziabreva et al., 2006) and a

range of AD transgenic mouse models (Chuang, 2010; Hamilton

et al., 2010). Neural precursor activity can be regulated by gene

products involved in both sporadic AD (i.e., ApoE4) (Levi and Mi-

chaelson, 2007; Li et al., 2009; Yang et al., 2011) and familial AD

(i.e., beta-amyloid, soluble amyloid precursor protein) (Lazarov

andMarr, 2010; Smukler et al., 2011). Furthermore, genetic poly-

morphisms affecting NSC activity can influence AD risk (Nho

et al., 2015), while neurogenesis-related genes were identified

as a prominently over-represented class of AD risk genes in a

recent analysis of published genome-wide linkage, association,

and expression studies (Talwar et al., 2014). Thus, dissecting the

mechanisms involved in NSC dysregulation could provide new

opportunities for preventive and regenerative therapeutic strate-

gies for neurodegeneration.

Recently, lipids have gained attention in the regulation of NSC

behavior. In the forebrain subventricular zone (SVZ) niche, lipid

metabolism genes are among the major classes of transcrip-

tional differences between quiescent and activated NSCs

(Codega et al., 2014). Moreover, in both SVZ and hippocampal

dentate gyrus (DG) niches, neural precursors require fatty acid

oxidation for proliferation (Chorna et al., 2013; Knobloch et al.,

2013; Matsumata et al., 2012; Stoll et al., 2015). NSCs are posi-

tioned particularly well in the SVZ to be regulated by environ-

mental lipid signals. Systemic signals can reach NSCs via their

contacts with the cerebrospinal fluid (CSF) and SVZ blood

vessels (Codega et al., 2014; Mirzadeh et al., 2008; Tavazoie

et al., 2008). Ependymal cells are a major source of local signals,

constituting approximately 25% of cells within the SVZ niche

(Doetsch et al., 1997) and surrounding NSCs in pinwheel
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Figure 1. Early Onset of Neurogenesis Defects Correlates with Neutral Lipid Accumulations within Ependymal Niche Cells in the SVZ of AD

Mice and Patients

(A–D) Quantification and representative micrographs of Ki67+ proliferating cells (A), Ki67+/GFAP+ proliferating NSCs (B), Ki67+/DCX+ proliferating neuroblasts

(C), and DCX+ neuroblasts (D) in the SVZ niche of 2-month-old WT and 3xTg-AD mice (n = 4). Same fields shown in (C) and (D). Unpaired t test.

(E–H) Quantification and representative micrographs of Ki67+ proliferating cells (E), Ki67+/GFAP+ proliferating NSCs (F), Ki67+/DCX+ proliferating neuroblasts

(G), and DCX+ neuroblasts (H) in the DG niche of 2-month-old WT and 3xTg-AD mice (n = 4). Same fields shown in (E) and (G). Unpaired t test.

(I and J) ORO staining of coronal sections containing the lateral ventricle (LV) and third ventricle (3V) of 2-month-old and 11-month-old WT (I) and 3xTg-AD

(J) mice.

(legend continued on next page)
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structures within the walls of the lateral ventricles (Mirzadeh

et al., 2008). Ependymal cells provide a critical interface for the

exchange of ions, macromolecules, and immune cells between

the brain and the circulating CSF, secrete a variety of molecules

that regulate NSC activity, and have been identified as sites of

lipid synthesis and storage (Bouab et al., 2011; Etschmaier

et al., 2011; Hamilton et al., 2010).

Interestingly, AD is associated with both declines in neuro-

genesis-regulated cognitive processes and aberrations in lipid

metabolism. Indeed, lipid accumulations were one of the five

original AD-associated tissue pathologies reported by Alois

Alzheimer (Alzheimer, 1907). More recently, links have strength-

ened between aberrant lipid metabolism and neurodegenera-

tion in AD (Astarita et al., 2011; Fraser et al., 2010; Hussain

et al., 2013; Podtelezhnikov et al., 2011; Tanzi, 2012), while

epidemiological studies have demonstrated that AD risk factors

include peripheral metabolic conditions such as insulin resis-

tance, obesity, and dyslipidemia (Pasinetti and Eberstein,

2008). However, deeper mechanistic insights into the role of

abnormal lipid metabolism in AD have been hindered by the

technical complexity involved with localizing, identifying, and

determining the biological functions of individual lipid species

in the brain.

In the present study, we developed methodologies to over-

come these limitations, allowing us to uncover a new patholog-

ical mechanism in AD. Our results reveal that lipid metabolism

defects originating within a major neurogenic niche can disrupt

NSC-mediated regeneration and plasticity.

RESULTS

Early Onset of Neurogenesis Defects and
AD-Associated Neutral Lipid Accumulations at the
Brain-CSF Interface
The triple-transgenic Alzheimer’s disease (3xTg-AD) mouse is a

unique AD model that accumulates both amyloid plaques and

neurofibrillary tangles with age (Oddo et al., 2003). We have pre-

viously shown that neural precursor proliferation and neurogenic

output are decreased in 3xTg-ADmice at both 11 and 18months

of age (Hamilton et al., 2010). We hypothesized that if suppres-

sion at the level of NSCs underlies the defects in neurogenic

output, then it should be possible to identify an earlier time win-

dow when only proliferating precursors are affected. Consistent

with this, multi-stage analysis of SVZ neurogenesis in 2-month-

old mice revealed that 3xTg-AD mice already have significant

decreases in total Ki67+ cell proliferation (Figure 1A), Ki67+/glial

fibrillary acidic protein (GFAP+) proliferating NSCs (Figure 1B),

and Ki67+/DCX+ proliferating neuroblasts (Figure 1C), without

alterations in the total number of DCX+ neuroblasts (Figure 1D),

number of pinwheel units (Figure S1A), or neurospheres (Fig-

ure S1B). There was also no significant difference in Ki67+/

Iba1+ proliferating microglia (Figure S1C). In the hippocampal
(K and L) Representative micrographs (K) and quantifications (L) of lipid droplets

way ANOVA.

(M and N) ORO staining of transverse sections containing the LV and the SVZ o

representative higher-magnification images.

The scale bar in (A) (for A–H) represents 5 mm, in (I) (for I and J) and (M) (for M and N

mean ± SEM. *p % 0.05 and **p % 0.005. See also Figure S1 and Table S1.

Ce
DGniche, total Ki67+ (Figure 1E) and total DCX+ (Figure 1H) pop-

ulations were both significantly decreased, while Ki67+/GFAP+

proliferating NSCs (Figure 1F) and Ki67+/DCX+ proliferating neu-

roblasts (Figure 1G) showed trends toward decreases that ap-

proached statistical significance. The number of Ki67+/Iba1+

proliferating microglia was unchanged (Figure S1D).

Neurogenesis impairments in 3xTg-ADmice occur before am-

yloid plaques and neurofibrillary tangles (Hamilton et al., 2010),

suggesting the involvement of other pathogenic mechanisms.

We observed that NSC suppression in 2-month-old 3xTg-AD

mice occurred concomitant to a highly specific accumulation

of oil red O (ORO)-positive neutral lipid droplets along the entire

brain-CSF interface, including the lateral ventricle of the fore-

brain SVZ niche and the third ventricle of the hypothalamus

(Figures 1I and 1J). At 2 months of age, SVZ lipid droplets

were statistically significantly increased in 3xTg-AD mice

compared to wild-type (WT) mice (Figure S1E), and lipid droplet

numbers correlated well with the observed declines in SVZ neu-

rogenesis markers (Figures S1F–S1I). ORO-positive lipid drop-

lets continued increasing with age in 3xTg-AD mice; however,

even at 11 months of age, they were never detected outside of

the ventricular zone in either WT or 3xTg-AD mice (Figures 1I

and 1J). SVZ lipid droplets were found uniquely in ventricle-con-

tacting ependymal cells and did not accumulate in the sub-epen-

dymal populations of neural precursors (Figures 1K and 1L).

These data reveal a buildup of lipid droplets within the SVZ niche

during the window of preferential NSC inhibition.

We then tested whether aberrant lipid accumulations are pre-

sent in the SVZ of postmortem human AD brains (Figures 1M and

1N). Remarkably, we found similar lipid accumulations along the

lateral ventricles in post-mortem brain tissues from nine AD pa-

tients (78.0 ± 2.89 years old) and five age-matched cognitively

normal individuals (79.6 ± 5.88 years old) (Figures 1M and 1N;

Figures S1E and S1F; Table S1 for patient information). Four of

the five controls presented sparse ORO staining of the ependy-

mal layer along the majority of the ventricular wall (Figures 1M

and S1J). In contrast, the majority of AD brains showed dense

accumulations of ORO at the basal surface of the ependyma

(Figures 1N and S1K), with four of the nine presenting a mixture

of dense and sparse areas. These data collectively reveal a se-

lective accumulation of lipid droplets along the brain-CSF inter-

face of both human AD brains and 3xTg-AD mice, and at least in

3xTg-AD mice, this accumulation coincides with impaired NSC

function during early adulthood.

Accumulating AD-Associated Lipids Are Triglycerides
Enriched with Oleic Acid
Lipid droplets are lipid-rich organelles composed of neutral lipids

such as fatty acids, triglycerides, and sterols (Martin and Parton,

2006). To identify the classes of lipids accumulating within the

SVZ niche, we developed an imaging mass spectrometry

(IMS)-based lipidomics strategy. IMS is a unique form of mass
(arrowheads) in 3xTg-AD ependymal versus sub-ependymal cells (n = 3). One-

f normal individuals (CTRL) (M) and AD patients (N). Panels at the right show

) represents 100 and 10 mm, in (K) represents 1 and 2 mm. Error bars represent
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Figure 2. Accumulating AD-Associated Lipids Are Triglycerides Enriched in OA

(A–C) IMS showing the 12 triglycerides that accumulate surrounding the lateral ventricle of 5-month-old 3xTg-AD mice. (A) Structures (total carbon-to-un-

saturation ratio) of the 12 enriched triglycerides with their associated total ion counts. (B) Table of m/z ratios and fold changes of the 4most enriched triglycerides

(50:1, 52:2, 54:2, and 54:3). (C) Representative ion density maps. Unpaired t test.

(D) Tandem mass spectrometry of the three major triglycerides (50:1, 52:2, and 54:2) to identify their fatty acid side chains. The fractionation pattern from the

sodium-adducted triglyceride 50:1 is shown. The inset table summarizes the combined fractionation patterns of the three major triglycerides, showing a pre-

dominant enrichment of OA (red).

(E) Fatty acid biosynthesis pathway involved in the production and subsequent processing of OA (18:1). Fatty acids identified as enriched in the 3xTg-AD SVZ are

shown in red. Enzymes involved at each step are shown, and include the SCD, ELOVL, and FASD gene families.

The scale bar in (C) represents 200 mm. Error bars represent mean ± SEM. *p % 0.05, **p % 0.005, and ***p % 0.0005. See also Figure S2.
spectrometry that employs laser desorption-ionization to collect

mass spectra data at high-resolution intervals across a tissue

section, thereby revealing the spatial distribution of individual

biomolecules within the unperturbed tissue architecture. IMS re-

vealed that lipid accumulations in the SVZ niche are selectively

enriched in triglycerides. Twelve distinct triglycerides were found

to be increased by 2- to 27-fold in the SVZ niche of 3xTg-AD
400 Cell Stem Cell 17, 397–411, October 1, 2015 ª2015 Elsevier Inc.
mice compared to strain controls (Figure 2A). The four largest in-

creases occurred in triglycerides having structures of 50:1, 52:2,

54:2, and 54:3 (total carbon-to-unsaturation ratio) (Figure 2B),

and IMS ion density maps illustrated a specific enrichment of

these triglycerides along the ventricular borders (Figures 2C

and S2A). Conversely, cholesterol content in the SVZ was un-

changed (Figure S1B).



Triglycerides are composed of a glycerol head group with

three fatty acid side chains. Because individual fatty acids have

distinctive effects on energy metabolism, intra- and inter-cellular

signaling, gene expression, and membrane properties, we iden-

tified the constituent fatty acids of the accumulating ependymal

triglycerides using tandem mass spectrometry. Ionization of the

three most increased triglycerides yielded predictions of oleic

acid (OA) (18:1), palmitic acid (16:0), stearic acid (18:0), palmito-

leic acid (16:1), eicosenoic acid (20:1), and eicosadienoic acid

(20:2) sidechains inanapproximately7:5:3:1:1:1 ratio (Figure2D).

Interestingly, these fatty acids are closely related within a com-

mon fatty acid biosynthetic pathway (Figure 2E). Together, these

data reveal a panel of AD-associated triglycerides that accumu-

late at the brain-CSF interface and that are enriched in OA.

Short-Term ICV Infusion of OA Recapitulates Lipid
Droplets and AD-Associated Triglycerides but Does Not
Affect SVZ Neurogenesis
Because OA was the major fatty acid accumulating in the SVZ

niche, we investigated the consequences of increasing local

OA levels in the SVZ of WT mice. OA administration to WT

mice for 7 days by direct intracerebroventricular (ICV) infusion re-

sulted in the formation of ORO-positive ependymal lipid droplets

that closely resembled those of 3xTg-AD mice and human AD

patients (Figures 3A and 3B). Moreover, IMS showed a concom-

itant increase in AD-associated triglycerides (Figure 3C). To

determine whether this was a direct or indirect consequence of

OA administration, we traced the incorporation of the infused

OA with a sensitive in vivo metabolic labeling procedure that

uses OA comprised entirely of heavy 13C (13C OA) (Figures 3D–

3F). Comparison of IMS spectra between 13C OA and regular
12C OA revealed that OA infusion into WT mice is sufficient to

generate virtually all AD-associated triglycerides. For example,
13C OA shifted the triglyceride 50:1 by exactly 18.060 atomic

units (incorporation of one OA side chain), the triglyceride 52:2

by 18.060 and 36.120 atomic units (incorporation of up to

two OA side chains) (Figures 3D–3F), the triglyceride 54:2 by

18.060 and 36.120 atomic units (incorporation of up to two OA

side chains) and the species 54:3 by 18.060, 36.120, and

54.180 atomic units (incorporation of up to three OA side chains).

Uptake of 13COA into each of the 12 AD-associated triglycerides

is summarized in Figure 3F and shows that 11 of the 12 AD-asso-

ciated triglycerides are replicated in WT mice simply by ICV

infusion of OA. These metabolic labeling experiments also

demonstrated that some AD-associated triglycerides contained
13C OA that had been elongated (56:4 and 56:5), reduced (52:2

and 52:3), saturated (52:2 and 54:2), and/or desaturated (54:4,

56:4, and 56:5), revealing that OA at the brain-CSF interface

can be used as a substrate to locally generate longer chain

and polyunsaturated fatty acids.

We then assessed OA’s effects on SVZ neurogenesis

following this 7-day ICV infusion. Multi-stage analysis of SVZ

neurogenesis revealed that there were no changes in any of

the SVZ cell populations analyzed (Figures 3G–3M), including to-

tal cell proliferation (Figure 3G), proliferating NSCs (Figure 3H),

number of pinwheel units (Figure 3I), number of neurospheres

grown (Figure 3J), proliferating neuroblasts (Figure 3K), total neu-

roblasts (Figure 3L), and proliferating microglia or macrophages

(Figure 3M). Thus, short-term elevation of a single fatty acid, OA,
Ce
is sufficient to induce ependymal lipid droplet accumulation and

to replicate the AD-associated triglyceride phenotype, but it

does not have a generalized inhibitory or toxic effect on the SVZ.

OA Treatment Selectively Suppresses NSC Activity
Little is known about the impact of fatty acids on NSC function.

Because the 2- to 3-week in vivo division frequency of NSCs is

much longer than the 7-day OA infusion paradigm used earlier,

we employed more targeted in vitro and in vivo assays to specif-

ically test whether excess OA negatively regulates NSC activity.

We found that OA concentration is a critical determinant of

NSC colony formation in the in vitro neurosphere assay, because

doubling the OA concentration was sufficient to convert it from a

positive to a negative regulator of neurosphere formation (Fig-

ures 4A–4F and S3A–S3D). Neural precursors exposed to

elevated OA at the time of initial plating (when neurosphere

growth requires NSC activation) generated 50% fewer neuro-

sphere colonies (Figures 4A and 4B). In contrast, neural precur-

sors exposed to the same OA concentration after 4 days in vitro

(when neurosphere growth is driven by proliferation of progeni-

tors) were unaffected (Figures 4C and 4D). Consistent with a spe-

cific effect on NSCs, neurosphere self-renewal assays showed

that when OA and vehicle-treated spheres of equal sizes were

dissociated and re-plated under identical neurosphere-forming

conditions, there were 20% fewer neurosphere-initiating NSCs

in OA-treated neurospheres (Figures 4E and 4F). Flow cytometry

(Figure 4G) and immunocytochemistry (Figures 4H and 4I)

confirmed that 100 mM OA inhibits division of a sub-population

of neural precursors but does not have a generalized impact

on either proliferation or cell death. Thus, in vitro, elevated OA

levels selectively inhibit NSC proliferation.

The previous data suggested a model in which OA accumu-

lating in ependymal cells acts in a paracrine manner to dysregu-

late NSC activity. To begin exploring this idea, we first tested

whether the SVZ of 3xTg-AD mice releases anti-neurogenic fac-

tors by growing WT NSCs in the presence of either 3xTg-AD or

WT SVZ whole mounts. We found a 50% decrease in neuro-

sphere number after whole mount co-culture from 3xTg-AD

mice (Figure 4J), revealing that the SVZ of 3xTg-AD mice con-

tains factors that inhibit NSC proliferation. Conditioned media

from 3xTg-AD whole mounts likewise inhibited the neurosphere

number bymore than 50%when compared toWTwhole mounts

(Figure 4J), indicating that this AD-associated inhibitory activity

is mediated by soluble rather than contact-mediated mecha-

nisms. Interestingly, the decline in the neurosphere number is

similar in magnitude to that observed following 100 mMOA treat-

ment (Figures 4A and 4B). This confirms that soluble factors

released from the 3xTg-AD niche inhibit NSC activity.

NSCs only divide once every several weeks in vivo, making it

difficult to assess treatment-induced changes in their activity.

We therefore employed a well-characterized SVZ regeneration

assay to evaluate whether excess OA can suppress NSC activa-

tion in vivo. In this model, elimination of proliferating SVZ cells

(primarily progenitors and neuroblasts) with the anti-mitotic

agent cytosine arabinoside (AraC) results in more synchronized

activation of the quiescent NSC pool, which then rapidly repopu-

lates the SVZ niche (Doetsch et al., 1999). After 6 days of infusion

of AraC with either OA or vehicle, pumps were removed and the

animals were sacrificed 24-hr post-AraC withdrawal (Figures
ll Stem Cell 17, 397–411, October 1, 2015 ª2015 Elsevier Inc. 401
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Figure 3. Short-Term ICV Infusion of OARecapitulates Lipid Droplets and AD-Associated Triglycerides but Does Not Significantly Affect SVZ

Neurogenesis

(A and B) ICV infusion of vehicle (n = 4) (A) or OA (n = 4) (B) for 7 days, with boxed areas magnified at the right.

(C) Representative IMS ion density maps following vehicle or OA infusion showing an AD-associated triglyceride that is induced by OA infusion.

(D and E) IMS following metabolic labeling with 12C OA (n = 3) versus 13C OA (n = 3) (D), with sample ion density maps of 52:2 (E).

(legend continued on next page)
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4K–4N). No proliferating or post-mitotic neuroblasts were pre-

sent in the SVZ (data not shown), consistent with previous find-

ings (Doetsch et al., 1999) and validating that the AraC treatment

was effective. Quantification revealed that OA inhibited the NSC-

mediated recovery, significantly decreasing the total numbers of

Ki67+ proliferating cells (Figure 4L) and Ki67+/GFAP+ prolifer-

ating NSCs (Figure 4M) when compared to vehicle. There was

no significant impact on the numbers of proliferating microglia

or macrophages within the SVZ (Figure 4N). Thus, increased

OA within the SVZ niche can suppress proliferation of NSCs,

adversely impacting their ability to maintain niche homeostasis.

Lipid Metabolism Alterations Occur within the SVZ
Niche
The previous data suggested that OA accumulation at the brain-

CSF interface is a key mediator of AD-associated NSC impair-

ment. To identify a possible systemic origin of the accumulating

OA,westudied theplasmaandCSFof3xTg-ADmiceusinga liquid

chromatography mass spectrometry (LC-MS)-based lipidomic

approach (see Experimental Procedures and Figures S4 and S5).

However, concentrations of the 12 AD-associated triglycerides

and their associated free fatty acids were unchanged between

3xTg-ADmiceand theirWTcontrols inboth thesecirculatingfluids

(Figures 5A and 5B). Moreover, the central versus peripheral lipid

profiles of 3xTg-ADmice exhibited differential changes as choles-

terol was increased in the 3xTg-AD plasma (Figure S5E) but not

within the 3xTg-AD SVZ (Figure S2B). We therefore explored

whether lipid metabolism was altered within the SVZ niche.

Gene expression in the microdissected SVZ of 3xTg-AD

versus WT mice was compared using a 55,681-probe genome-

widemicroarray and revealed 993 significantly up- or downregu-

lated genes (fold change R 1.4 and p % 0.005) (Figure 5C).

Functional analysis of this dataset identified cellular metabolism

(comprising carbohydrate, nucleic acid, amino acid, and lipid

metabolism) as one of the top five significantly altered cate-

gories, along with neurogenesis-related categories such as

cognitive function, cell cycle, and proliferation and cellular differ-

entiation (Figure 5D and Table S2). Manual and database-medi-

ated extraction of lipid-related genes revealed that 142 of the

993 significantly modulated changes (14.3%) were lipid related

(Figure 5E and Table S3), including genes implicated in various

aspects of fatty acid metabolism (i.e., PLA2, SCD-1, ELOVL7,

FABP5, LIPIN2, and NPC1).

Together, these data show that AD-associated triglycerides

accumulating in SVZ ependymal cells are unlikely to originate

in the periphery, and they identify the SVZ niche as a site of

AD-associated alterations in lipid metabolism gene expression.

Hyper-Activation of AKTSignalingMediatesOA-Induced
Impairment of NSC Activity
We next investigated ways of interfering with OA-induced NSC

impairments. Studies of several peripheral cell types indicate
(F) Table summarizing the number of 13C OA chains incorporated into each AD-a

(G–M) 7-day vehicle (n = 5) or OA (n = 5) infusion for quantification of Ki67+ proli

units per field (n = 3 vehicle or n = 4OA) (I), neurosphere number (n = 3 vehicle or n =

Ki67+/Iba-1+ proliferating microglia (M) in the SVZ niche. Unpaired t test.

Scale bars in (A) (for A and B) represent 200 and 10 mm and in (C) and (E) represen

injection side.

Ce
that OA release can modulate AKT activity in target cells (Lee

et al., 2014; Shibata et al., 2013; Yun et al., 2006). Consistent

with AKT being a possible mediator of OA’s effects on NSCs, a

single ICV injection of OA into WT mice led to hyper-phosphory-

lation of AKT within the ipsilateral SVZ within 4 hr (Figures 6A–

6C). Similarly, when SVZ neural precursors were cultured using

the neurosphere assay, acutely treated with OA, and then lysed

after 15 min, 30 min, 1 hr, 2 hr, 4 hr, and 24 hr, an increase in AKT

signaling was observed beginning at the 4-hr point (Figures 6D

and 6E and data not shown).

To begin testing whether OA-induced hyper-activation of AKT

inhibits NSC activity, we used a pharmacological approach to

suppress AKT phosphorylation in cultured neurosphere-derived

cells (Figures 6D and 6E). This experiment showed that OA on its

own increased phosphorylated AKT (pAKT), 12.5 mM of the PI3-

kinase inhibitor LY294002 eliminated basal pAKT, and when OA

was combined with LY294002, OA normalized pAKT toward

control levels (Figures 6D and 6E). OA treatment and LY in-

hibition did not have a statistically significant effect on phos-

phorylated extracellular signal-related kinase (pERK) (Figure 6D).

Based on these biochemical data, we hypothesized that if OA-

induced hyper-phosphorylation of AKT mediates its inhibition

of NSCs, then simultaneous inhibition of pAKT with LY294002

should rescue OA’s inhibition of neurosphere formation. Indeed,

when neurospheres were passaged into the medium containing

OA, LY294002, or OA+ LY294002, OA reduced the neurosphere

number by 50% (as in our previous experiments), LY294002

dose-dependently inhibited the neurosphere number, and

remarkably, OA’s negative effect on neurosphere formation

was converted to a positive effect when combined with

LY294002 (i.e., an increased neurosphere number compared

to vehicle) (Figures 6F and 6G). These data implicate AKT

signaling as an important effector of OA’s effects on NSCs

in vitro and suggest that NSCs require an optimal level of AKT

signaling: excess OA under normal conditions leads to a detri-

mental hyper-stimulation of AKT activity, whereas excess OA un-

der conditions of insufficient AKT signaling leads to a beneficial

normalization of AKT activity.

We then used an adult brain electroporation approach (Bar-

nabé-Heider et al., 2008) to genetically target ventricle contact-

ing GFAP-expressing NSCs, allowing us to determine whether

AKT also mediates OA’s effects on NSC proliferation in vivo.

A plasmid encoding GFAP-cre was electroporated into the

ventricle walls of adult R26-flox-stop-flox-EYFP mice to induce

the expression of EYFP in GFAP+ NSCs and their progeny.

The GFAP-cre plasmid was co-electroporated with plasmids en-

coding either kinase-dead AKT (KD-AKT) or empty vector (EV).

Immediately following electroporation, 7-day mini-osmotic

pumps were implanted for ICV infusion of either vehicle or OA

to test the effects of OA on the electroporated ventricle-contact-

ing NSCs (Figures 6H and 6I). Consistent with our previous data,

quantification of the EYFP+ cells after 7 days showed that OA
ssociated triglyceride.

ferating cells (G), Ki67+/GFAP+ proliferating NSCs (H), whole-mount pinwheel

4 OA) (J), Ki67+/DCX+ proliferating neuroblasts (K), DCX+ neuroblasts (L), and

t 200 mm. Error bars represent mean ± SEM. * in (A)–(C) denotes the ipsilateral
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Figure 4. OA Treatment Selectively Suppresses NSC Activity In Vitro and In Vivo

(A–D) Primary neurospheres fromC57BL6micewere dissociated and re-plated under neurosphere-forming conditions and treatedwith either vehicle or OA (50 or

100 mM) on the day of plating (D0, NSC activation) (A and B) or 4 days later (D4, progenitor expansion) (C and D) (n = 3 per condition). One-way ANOVA.

(E and F) NSC self-renewal was assessed in dissociated secondary neurospheres plated in identical conditions after 10 days of continuous treatment with OA or

vehicle (n = 6 per condition). One-way ANOVA.

(G) Dissociated primary neurospheres from C57BL6 mice plated in the presence of EGF and treated on the day of plating with vehicle or 50 or 100 mM OA

conjugated to the vehicle for 2–3 days (n = 3 per condition). Quantification by flow cytometry analysis of carboxyfluorescein diacetate succinimidyl ester (CFSE),

a cell division assay. Cells were differentiated without EGF as a positive control for differentiation. One-way ANOVA.

(H and I) Quantification of immunocytochemistry for Ki67 (proliferation) (H) and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling

(TUNEL, cell death) (I) (n = 3 per condition). One-way ANOVA.

(J) Neurosphere growth in the presence of 3xTg-AD or WT SVZ whole mounts (co-culture) (n = 4) or in the presence of filtered conditioned media from 3xTg-AD

(n = 3) or WT (n = 5) whole mounts (conditioned media). Unpaired t test.

(K–N) ICV infusion of AraC with vehicle (n = 3) or OA (n = 4). Schematic of AraC SVZ regeneration assay (K) with quantification and representative micrographs of

Ki67+ proliferating cells (L), Ki67+/GFAP+ proliferating NSCs (M), and Ki67+/Iba-1+ proliferatingmicroglia (N) in the SVZ. Unpaired t test. Scale bars in (L) (for L–N)

represent 5 mm. *p % 0.05 and ***p % 0.0005.

See also Figure S3.
infusion in the EV group resulted in a 37.6% decrease in EYFP+

cells relative to vehicle that approached statistical significance

(p = 0.08) (Figure 6I). Importantly, this OA-induced suppression
404 Cell Stem Cell 17, 397–411, October 1, 2015 ª2015 Elsevier Inc.
of NSC proliferative expansion was attenuated in the KD-AKT

group (Figure 6I), which exhibited only a 21.2% decrease relative

to vehicle (p = 0.2). Together, these in vitro and in vivo rescue
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Figure 5. Lipid Metabolism Is Altered within the SVZ of 3xTg-AD Mice

(A and B) LC-MS analysis of lipid species within plasma and CSF of WT and 3xTg-AD mice (n = 4). The normalized peak area for the four major AD-associated

triglycerides (A) and their associated fatty acids (B) shows no significant differences. Unpaired t test.

(C–E) Microarray of microdissected SVZs of 7-month-old WT and 3xTg-ADmice (n = 4). (C) Volcano plot. (D) Ingenuity pathway analysis of differentially regulated

categories, hand-curated into thematic categories. (E) Heatmap of differentially regulated lipid-related genes, grouped hierarchically. Lipid-related genes were

extracted from the list of 993 modulated genes manually and cross-referenced with the Gene Ontology terms lipid, lipoprotein, triglyceride, and fatty acid. Error

bars represent mean ± SEM.

See also Figures S4 and S5 and Tables S2 and S3.
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Figure 6. Hyper-Activation of AKT Signaling Mediates OA-Induced Impairment of NSC Activity

(A–C) Acute regulation of the AKT signaling pathway by OA in vivo. Representative western blot of ipsilateral SVZ microdissections 4 hr after ICV injection of

vehicle (n = 4) or OA (n = 4) (B) with densitometric quantification of pAKT (C). Unpaired t test.

(D and E) Dissociated primary neurospheres fromC57BL6mice plated and grown in the presence of EGF for 2 days and acutely treated for 4 hr with either vehicle

or 100 mM OA alone or combined with 12.5 mM of LY294002 (n = 3). Representative western blot (D) and densitometric quantifications for pAKT (E). One-way

ANOVA.

(F and G) Neurospheres grown in the presence of vehicle or 100 mM OA alone or combined with 12.5 or 25 mM of LY294002 (n = 4). Paired t test.

(H and I) Electroporation of a plasmid encoding GFAP-cre into the ventricle walls of adult R26-flox-stop-flox-EYFP mice to induce the expression of EYFP in

GFAP+ NSCs and their progeny. The GFAP-cre plasmid was co-electroporated with plasmids overexpressing either KD-AKT or EV. Immediately following

electroporation, 7-day osmotic pumps were implanted for ICV infusion of either vehicle or OA (n = 6 animals per condition). Quantification and representative

micrograph of the number of EYFP+ cells per ventricle, providing a measure of the proliferative expansion of the electroporated GFAP+ NSCs (I). Unpaired t test.

Scale bars in (I) represent 25 mm. Error bars represent mean ± SEM. *p % 0.05, **p % 0.005, and ***p % 0.0005.
experiments provide evidence that exogenous OA suppresses

NSC activity via hyper-activation of AKT signaling.

Inhibition of SCD-1 Activity Rescues NSC Impairment in
3xTg-AD Mice
To establish whether NSC suppression in 3xTg-AD mice is due

to elevated endogenous OA levels, we tested whether pharma-

cological inhibition of the OA-producing enzyme, stearoyl-CoA

desaturase (SCD), could attenuate the NSC dysfunction.

SCD-1 was identified in our microarray analysis of the 3xTg-AD

SVZ and is increased in the brains of human AD patients, where

levels of SCD-1-derived unsaturated fatty acids correlate nega-

tively with memory performance (Astarita et al., 2011; Cunnane

et al., 2012; Fraser et al., 2010). Thus, SCD-1 represents amech-

anistically relevant target for NSC modulation in AD.

28-day ICV mini-osmotic pumps containing either vehicle or

SCD-1 inhibitor ab142089 were implanted into 3xTg-AD mice

at 2 months of age (i.e., the onset of NSC impairments in the

SVZ). Analysis of brain sections of these mice by IMS confirmed

that infusion of the SCD-1 inhibitor resulted in a generalized
406 Cell Stem Cell 17, 397–411, October 1, 2015 ª2015 Elsevier Inc.
reduction of the OA-enriched AD-associated triglycerides in the

SVZ (Figure 7A). Remarkably, stage-specific neurogenesis anal-

ysis (Figures 7B–7E) revealed that SCD-1 inhibition prevented the

decline in the total number of Ki67+ proliferating cells (Figure 7B)

and in the Ki67+/GFAP+ NSC subpopulation (Figure 7C) in the

SVZ of these 3xTg-AD mice, maintaining levels found in WT ani-

mals. Proliferating and total DCX+ neuroblast populations were

not decreased in these mice (Figures 7D and 7E). SCD inhibition

also caused a small increase in proliferating Iba1+ microglia in

both WT and 3xTg-AD mice (WT, 0.0; 3xTg-AD, 3.22 ± 1.834

for vehicle versus WT, 30.07 ± 8.926; 3xTg-AD, 16.47 ± 4.92

cells/SVZ for inhibitor). We also analyzed the DG niche of these

mice (which is more distant from the ICV infusion site) and found

a complete rescue of total cell proliferation (Figure 7F) and prolif-

erating neuroblasts (Figure 7H), a partial rescue of NSC activity

(Figure 7G) and total neuroblasts (Figure 7I), and no change in

proliferatingmicroglia (data not shown). This in vivo rescueexper-

iment directly implicates aberrant OA metabolism in AD-associ-

ated NSC dysfunction, confirming the central hypothesis of this

study and identifying a strategy for rescuing NSC activity in AD.
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Figure 7. Inhibition of SCD-1 Activity In Vivo Counteracts NSC Impairment in 3xTg-AD Mice

(A) Cohorts of 2-month-oldWTor 3xTg-ADmicewere implantedwith ICV osmotic pumps containing either vehicle (n = 3) or SCD-1 inhibitor (n = 5) for 25 days. The

fold change summary of IMS on brain sections shows that SCD-1 inhibitor decreased the accumulation of AD-associated OA-enriched triglycerides in the SVZ.

(B–E) Quantification of Ki67+ proliferating cells (B), Ki67+/GFAP+ proliferating NSCs (C), Ki67+/DCX+ proliferating neuroblasts (D), and DCX+ neuroblasts (E) in

the SVZ. Unpaired t test.

(F–I) Quantification of Ki67+ proliferating cells (F), Ki67+/GFAP+ proliferating NSCs (G), Ki67+/DCX+ proliferating neuroblasts (H), and DCX+ neuroblasts (I) in the

DG. Unpaired t test.

(J and K) Summary figure. (J) Elevated OA-enriched triglycerides within ependymal cells of 3xTg-AD mice leads to inhibition of NSC proliferation by OA-induced

hyper-activation of AKT signaling. (K) Pharmacological inhibition of hyper-activated AKT signaling using a PI3K inhibitor (LY) or inhibition of SCD-1 alleviates OA’s

inhibitory effects on NSC activation and increases proliferation and neurogenesis. Error bars represent mean ± SEM. *p % 0.05 and **p % 0.005.
DISCUSSION

We identified lipid metabolism abnormalities within the NSC

niche of AD mice and patients and used recently developed
Ce
methodologies to dissect their impact on NSC activity. Our

results reveal a mechanism of stem cell dysregulation in which

disease-induced perturbations of niche fatty acid metabolism

suppress adult NSC activity. Moreover, they provide new
ll Stem Cell 17, 397–411, October 1, 2015 ª2015 Elsevier Inc. 407



support for the notion that AD is, at least in part, a metabolic dis-

ease of the brain.

Niche Lipid Metabolism: A Regulator of NSCs
The complexity of identifying and localizing individual brain lipid

species represents a major obstacle to deciphering the roles of

specific lipids under normal and pathological conditions. Under

normal conditions, SVZ neural precursors depend on fatty acid

oxidation for proliferation (Stoll et al., 2015), while baseline and

exercise-induced hippocampal neurogenesis and cognitive

enhancement require brain fatty acid synthesis (Chorna et al.,

2013; Knobloch et al., 2013). However, alterations in lipid meta-

bolism are associated with many cognitive disorders, including

Huntington’s, Parkinson’s, and Niemann-Pick’s diseases, as

well as AD (Adibhatla and Hatcher, 2008; de la Monte and

Tong, 2014; Guschina et al., 2011; Martinez-Vicente et al.,

2010; Merlo et al., 2010; Sharon et al., 2003). Using imaging

techniques, we identified 12 triglycerides that are associated

with lipid droplet accumulations in AD, that are enriched with

OA side chains, and that selectively accumulate in ependymal

cells of the SVZ niche. This accumulation occurred in the

absence of changes in circulating triglycerides or fatty acids in

either plasma or CSF. However, it was associated with extensive

changes in local lipid metabolism gene expression within the

SVZ, including in theOA-producing enzymeSCD,which is prom-

inently expressed in peri-ventricular cells (Polo-Hernández et al.,

2010; Polo-Hernández et al., 2014). Local OA elevation was

sufficient to recapitulate the AD-associated triglyceride profile

and selectively suppress NSC expansion in vitro and in vivo.

Mechanistically, OA hyper-stimulated the critical AKT-signaling

pathway involved in long-term NSC preservation. NSC prolifera-

tion impairments could be rescued (1) by inhibiting AKT hyper-

activation (with kinase-dead AKT) in OA-treated WT mice or (2)

by suppressing endogenous OA synthesis (with an SCD inhibi-

tor) in 3xTg-AD mice. Thus, like many other niche signals, spe-

cific fatty acids produced within the NSC niche can influence

NSC maintenance via regulation of NSC activation, quiescence,

or both.

Implications for the Pathogenesis of Alzheimer’s
Disease
Neurogenesis occurs in both the human SVZ and the human hip-

pocampus (Ernst and Frisén, 2015). In other vertebrates, hippo-

campal neurogenesis has been implicated in learning, memory,

and mood regulation, and it is likely to have an analogous role

in modulating function of the human hippocampus (Spalding

et al., 2013). However, human SVZ neurogenesis exhibits a

marked evolutionary divergence. Long-distance migration of

SVZ-derived neuroblasts to the adult human olfactory bulbs is

virtually non-existent (Bergmann et al., 2012), while neurogene-

sis in the SVZ-adjacent striatum is significantly increased (Ernst

et al., 2014). Interestingly, the human striatum has profuse con-

nections with the cortex, and the emergence of human striatal

neurogenesis parallels the evolutionarily increased importance

of this structure in higher cognitive functions such as cognitive

flexibility and mesolimbic functions associated with regulation

of reward, motivation, and pleasure (Bergmann et al., 2015).

Our data lead to the predictions that abnormalities in brain

lipid metabolism suppress neurogenesis early during pathogen-
408 Cell Stem Cell 17, 397–411, October 1, 2015 ª2015 Elsevier Inc.
esis of human AD and that this suppression contributes to stria-

tal and hippocampal dysfunction. Consistent with these ideas,

atrophy of the hippocampus is a well-established occurrence

in AD, and recent analyses of the deep brain gray matter have

revealed that striatal abnormalities are more prominent than

previously appreciated. Changes to the gross structure and

size of the striatum occur early during progression of both famil-

ial (early onset) and more common sporadic (late onset) forms of

AD (Cho et al., 2013; de Jong et al., 2011; de Jong et al., 2008;

Pievani et al., 2013). Indeed, brain imaging has revealed that

structural changes of both the striatum and the hippocampus

are evident at pre- and early-symptomatic stages in carriers of

familial AD-causing mutations (Cash et al., 2013; Lee et al.,

2013; Ryan et al., 2013) and that the striatum in particular is

the site of the earliest amyloid accumulations in familial AD

(Klunk et al., 2007; Knight et al., 2011). In view of the major roles

of the human striatum and hippocampus in higher cognition,

testing the hypothesis that neurogenesis defects contribute to

the early striatal and hippocampal changes occurring in human

AD represents an important challenge. This will require the

development of innovative diagnostic and imaging tools

that can allow in vivo measurement of neurogenesis and epen-

dymal fatty acid levels with high spatial resolution in pre-AD

individuals.

Because the hippocampal NSC niche does not directly con-

tact ependymal cells, the partial normalization of hippocampal

neurogenesis in 3xTg-AD mice treated with SCD inhibitor sug-

gests that accumulating ependymal lipids penetrate deeper

into the brain parenchyma. In this regard, the principal genetic

risk factor for sporadic AD is the ApoE4 polymorphism of

ApoE, the main lipid transporting apolipoprotein produced in

the brain. Inheritance of a single ApoE4 allele increases AD risk

by a factor of 4, and two ApoE4 alleles increase the risk by a fac-

tor of 20 (Corder et al., 1994; Corder et al., 1993; Strittmatter and

Roses, 1996). Furthermore, ApoE polymorphism affects adult

neurogenesis (Levi and Michaelson, 2007; Li et al., 2009; Yang

et al., 2011). It will therefore be of great interest to know whether

the lipid metabolism changes in the SVZ niche have more wide-

spread effects on other aspects of AD pathogenesis, such as

gliosis, amyloid plaques, neurofibrillary tangles, cerebrovascular

amyloidosis, or synaptic dysfunction.

Collectively, this work shows that excessive levels of OA at

the ependymal surface of the brain result in the deterioration

of neurogenic niches in AD. Besides directly contributing to

cognitive decline, the observed suppression of NSC activity

may explain why the brain’s stem cell system does not mount

a more robust protective or regenerative response in AD. Future

work focused on fatty acid metabolism within the brain may lead

to new therapeutic approaches to prevent cognitive decline and

improve stem cell-mediated brain repair during AD.

EXPERIMENTAL PROCEDURES

Experiments were conducted in accordance with the guidelines of the Cana-

dian Council of Animal Care and were approved by the institutional animal

care committee of the Research Center of the University of Montreal Hospital.

Mouse Strains

Female 3xTg-AD PS1M146V, APPSwe, and TauP301L; their littermate WT strain

(Oddo et al., 2003); and male C57BL6 mice were used in this study.



ICV Infusions

Alzet osmotic pumps (Durect) were stereotaxically implanted according to

manufacturer’s instructions. Pumps contained vehicle (fatty acid-free BSA),

500 mMOA, 10mM 12COAconjugated to vehicle, or 10mM 13COAconjugated

to vehicle (the latter for metabolic labeling studies). 2% AraC was ICV infused

with vehicle or 500 mMOA for 6 days, pumps were cut out, and mice sacrificed

24 hr later. Vehicle or 40 mM SCD-1 inhibitor was ICV infused for 25 days in

2-month-old WT or 3xTg-AD mice.

ICV Acute Injections

A 10-ml Hamilton syringe was used to inject 2 ml (1 ml/min) of vehicle or 500 mM

OA into the lateral ventricle of C57BL6 mice. Mice were sacrificed 4 hr later.

Adult Brain Electroporations

Electroporations were performed as described (Barnabé-Heider et al.,

2008). Plasmids were stereotaxically injected into the left lateral ventricle

(coordinates: 0-mm anterior-posterior, 0.9-mm medial-lateral, and 1.5-mm

dorsoventral, relative to Bregma). Each animal received an ICV injection of

2 ml, delivered over 1.5–2 min, containing 10 mg of each plasmid (20 mg total).

Human GFAP-cre (Michael Brenner, Raul Torres, and Klaus Rajewsky, cat#

40591, Addgene) with either KD-AKT (AKT-K179N) (William Sellers, cat#

9007, Addgene) or pECE EV (William Rutter, cat# 26453, Addgene) plasmids

was co-electroporated.

Neurosphere Assays

Neurospheres were generated using 20 ng/ml of epidermal growth factor

(EGF) (Sigma) as described previously (Bouab et al., 2011), according to a pro-

cedure modified from Reynolds and Weiss (1992). Clonal neurospheres were

grown at a density of 1.5 cells/ml in 24-well plates.

Laser Desorption Ionization Imaging Mass Spectrometry and

Tandem Mass Spectrometry

Spectral acquisitions were performed on either a MALDI-TOF/TOF Ultraflex-

treme mass spectrometer equipped with a SmartBeam II Nd:YAG/355-nm

laser or a SolariX XR 7T ParaCell Fourier transform ion cyclotronic resonance

(FT-ICR). IMS data were acquired using 100 shots per pixel using a 10-mm

lateral resolution and with a spectral resolution of 80,000 mm at a mass-to-

charge (m/z) ratio of 881.7569.

LC-MS

Plasma and CSF lipid extractions were carried out on a Synapt G2-S instru-

ment coupled to an Acquity UPLC Class I system both from waters.

Microarray

Microdissected SVZs from 7-month-old WT and 3xTg-AD mice were hybrid-

ized to the SurePrint G3 Mouse GE 8360K microarray (Agilent Technologies).

Microarray data are deposited in the GEO under accession number GEO:

GSE60460.

Statistical Analysis

Two-tailed unpaired t test, paired Student’s t test, or one-way ANOVA with

Tukey post hoc test was used as indicated in figure legends. All error bars

represent mean ± SEM. The significance level was set at p % 0.05.
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