820 research outputs found

    Assessment scales in stroke: clinimetric and clinical considerations

    Get PDF
    As stroke care has developed, there has been a need to robustly assess the efficacy of interventions both at the level of the individual stroke survivor and in the context of clinical trials. To describe stroke-survivor recovery meaningfully, more sophisticated measures are required than simple dichotomous end points, such as mortality or stroke recurrence. As stroke is an exemplar disabling long-term condition, measures of function are well suited as outcome assessment. In this review, we will describe functional assessment scales in stroke, concentrating on three of the more commonly used tools: the National Institutes of Health Stroke Scale, the modified Rankin Scale, and the Barthel Index. We will discuss the strengths, limitations, and application of these scales and use the scales to highlight important properties that are relevant to all assessment tools. We will frame much of this discussion in the context of "clinimetric" analysis. As they are increasingly used to inform stroke-survivor assessments, we will also discuss some of the commonly used quality-of-life measures. A recurring theme when considering functional assessment is that no tool suits all situations. Clinicians and researchers should chose their assessment tool based on the question of interest and the evidence base around clinimetric properties

    The tribology of laminated magnetic recording heads

    Get PDF
    This thesis investigates the mechanisms that lead to pole tip recession (PTR) in laminated magnetic recording heads (also known as "sandwich heads"). These heads provide a platform for the utilisation of advanced soft magnetic thin films in practical recording heads suitable for high frequency helical scan tape recording systems. PTR results from a differential wear of the magnetic pole piece from the tape-bearing surface of the head. It results in a spacing loss of the playback or read signal of 54.6dB per recording wavelength separation of the poles from the tape. PTR depends on the material combination used in the head, on the tape type and the climate - temperature and relative humidity (r.h.). Five head materials were studied: two non-magnetic substrate materials- sintered multi granular CaTi03 and composite CaTi03/ZrTi04/Ti02 and three soft magnetic materials- amorphous CoNbZr, and nanocrystalline FeNbSiN and FeTaN. Single material dummy heads were constructed and their wear rates measured when cycling them in a Hi-8 camcorder against commercially available metal particulate (MP) and metal evaporated (ME) tapes in three different climates: 25°C/20%r.h., 25°C/80%r.h. and 40°C/80%r.h. X-ray photoelectron spectroscopy (XPS) was used to examine changes the head surface chemistry. Atomic force microscopy (AFM) was used to examine changes in head and tape surface topography. PTR versus cycling time of laminated heads of CaTi03/ZrTiO4/Ti02 and FeTaN construction was measured using AFM. The principal wear mechanism observed for all head materials was microabrasion caused by the mating body - the tape surface. The variation in wear rate with climate and tape type was due to a variation in severity in this mechanism, except for tape cycling at 40°C in which gross damage was observed to be occurring to the head surface. Two subsidiary wear mechanisms were found: third body scratching (all materials) and grain pullout (both ceramics and FeNbSiN). No chemical wear was observed, though tribochemical reactions were observed on the metal head surfaces. PTR was found to be caused by two mechanisms - the first differential microabrasion of the metal and substrate materials and which was characterised by a low (~10nm) equilibrium value. The second was by deep ploughing by third body debris particles, thought mainly to be grain pullout particles. This level of PTR caused by this mechanism was often more severe, and of a non-equilibrium nature. It was observed more for ME tape, especially at 40°C/80%r.h. and 25°c/20%r.h. Two other phenomena on the laminated head pole piece were observed and commented upon: staining and ripple texturing

    Non-expanding universe: a cosmological system of units

    Full text link
    The product of two empirical constants, the dimensionless fine structure constant and the von Klitzing constant (an electrical resistance), turns out to be an exact dimensionless number. Then the accuracy and cosmological time variation (if any) of these two constants are tied. Also this product defines a natural unit of electrical resistance, the inverse of a quantum of conductance. When the speed of light c is taken away from the fine structure constant, as has been shown elsewhere, its constancy implies the constancy of the ratio e2/h (the inverse of the von Klitzing constant), e the charge of the electron and h Planck constant. This forces the charge of the electron e to be constant as long as the action h (an angular momentum) is a true constant too. From the constancy of the Rydberg constant the Compton wavelength, h/mc, is then a true constant and consequently there is no expansion at the quantum mechanical level. The momentum mc is also a true constant and then general relativity predicts that the universe is not expanding, as shown elsewhere. The time variation of the speed of light explains the observed Hubble red shift. And there is a mass-boom effect. From this a coherent cosmological system of constant units can be defined.Comment: 8 page

    Nature of bonding and electronic structure in MgB2, a boron intercalation superconductor

    Full text link
    Chemical bonding and electronic structure of MgB2, a boron-based newly discovered superconductor, is studied using self-consistent band structure techniques. Analysis of the transformation of the band structure for the hypothetical series of graphite - primitive graphite - primitive graphite-like boron - intercalated boron, shows that the band structure of MgB2 is graphite-like, with pi-bands falling deeper than in ordinary graphite. These bands possess a typically delocalized and metallic, as opposed to covalent, character. The in-plane sigma-bands retain their 2D covalent character, but exhibit a metallic hole-type conductivity. The coexistence of 2D covalent in-plane and 3D metallic-type interlayer conducting bands is a peculiar feature of MgB2. We analyze the 2D and 3D features of the band structure of MgB2 and related compounds, and their contributions to conductivity.Comment: 4 pages in revtex, 3 figures in 4 separate EPS file

    Thromboelastometry and Platelet Function during Acclimatization to High Altitude

    Get PDF
    Interaction between hypoxia and coagulation is important given the increased risk of thrombotic diseases in chronically hypoxic patients who reside at sea level and in residents at high altitude. Hypoxia alters the proteome of platelets favouring a prothrombotic phenotype, but studies of activation and consumption of specific coagulation factors in hypoxic humans have yielded conflicting results. We tested blood from 63 healthy lowland volunteers acclimatizing to high altitude (5,200 m) using thromboelastometry and assays of platelet function to examine the effects of hypoxia on haemostasis. Using data from two separate cohorts of patients following identical ascent profiles, we detected a significant delay in clot formation, but increased clot strength by day 7 at 5,200 m. The latter finding may be accounted for by the significant rise in platelet count and fibrinogen concentration that occurred during acclimatization. Platelet function assays revealed evidence of platelet hyper-reactivity, with shortened PFA-100 closure times and increased platelet aggregation in response to adenosine diphosphate. Post-expedition results were consistent with the normalization of coagulation following descent to sea level. These robust findings indicate that hypoxia increases platelet reactivity and, with the exception of the paradoxical delay in thromboelastometry clotting time, suggest a prothrombotic phenotype at altitude. Further work to elucidate the mechanism of platelet activation in hypoxia will be important and could impact upon the management of patients with acute or chronic hypoxic respiratory diseases who are at risk of thrombotic events. Erratum to: Thromboelastometry and platelet function during acclimatisation to high altitude (doi: 10.1160/TH17-02-0138) http://eprints.whiterose.ac.uk/129510/ In the Original Article by Rocke et al. “Thromboelastometry and platelet function during acclimatization to high altitude” (Thromb Haemost 2018; 118: 063-071) after publication of the article it has come to the corresponding author's attention that an author was inadvertently omitted from the manuscript. The author, Martin MacInnis, made a significant contribution to: 1. initiating the coagulation research that led to the manuscript, 2. designing the research protocol and performing the initial data analysis, 3. recruiting volunteers, writing applications for ethical approval and making other logistical arrangements that were necessary to complete the study. Martin MacInnis has read and approved the published version of the manuscript. Furthermore, a middle initial was added to the updated list (Shona E. Main) and misspelling of Elizabeth Horn's surname was corrected. The amended author list is as above. https://doi.org

    Chemical Bonding in Solids

    Get PDF
    This chapter discusses the various classes of hydride compounds, with a special focus on saline and metallic hydrides as well as oxyhydrides. It includes the following topics: thermodynamic stability, crystal chemistry, synthesis, and physical properties. The chapter also highlights recent progress in understanding hydride ion mobility in alkaline earth hydrides. It further deals with hydride compounds and in particular those containing alkali, alkaline earth, and transition and rare earth metals. The saline hydrides, that is, AH and AeH2 (with A=Li, Na, K, Rb, and Cs; Ae=Mg, Ca, Sr, and Ba) are proper ionic materials, in which hydrogen is present as hydride anions, H−. Saline hydrides show many similarities with their halide analogues, especially concerning crystal and electronic structures and, perhaps to a lesser extent, physical attributes such as brittleness, hardness, and optical properties

    An Effective-Medium Tight-Binding Model for Silicon

    Full text link
    A new method for calculating the total energy of Si systems is presented. The method is based on the effective-medium theory concept of a reference system. Instead of calculating the energy of an atom in the system of interest a reference system is introduced where the local surroundings are similar. The energy of the reference system can be calculated selfconsistently once and for all while the energy difference to the reference system can be obtained approximately. We propose to calculate it using the tight-binding LMTO scheme with the Atomic-Sphere Approximation(ASA) for the potential, and by using the ASA with charge-conserving spheres we are able to treat open system without introducing empty spheres. All steps in the calculational method is {\em ab initio} in the sense that all quantities entering are calculated from first principles without any fitting to experiment. A complete and detailed description of the method is given together with test calculations of the energies of phonons, elastic constants, different structures, surfaces and surface reconstructions. We compare the results to calculations using an empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX, CAMP-090594-

    Functional measures as potential indicators of down‐the‐drain chemical stress in freshwater ecological risk assessment

    Get PDF
    Conventional ecological risk assessment (ERA) predominately evaluates the impact of individual chemical stressors on a limited range of taxa, which are assumed to act as proxies to predict impacts on freshwater ecosystem function. However, it is recognized that this approach has limited ecological relevance. We reviewed the published literature to identify measures that are potential functional indicators of down-the-drain chemical stress, as an approach to building more ecological relevance into ERA. We found wide variation in the use of the term “ecosystem function,” and concluded it is important to distinguish between measures of processes and measures of the capacity for processes (i.e., species' functional traits). Here, we present a classification of potential functional indicators and suggest that including indicators more directly connected with processes will improve the detection of impacts on ecosystem functioning. The rate of leaf litter breakdown, oxygen production, carbon dioxide consumption, and biomass production have great potential to be used as functional indicators. However, the limited supporting evidence means that further study is needed before these measures can be fully implemented and interpreted within an ERA and regulatory context. Sensitivity to chemical stress is likely to vary among functional indicators depending on the stressor and ecosystem context. Therefore, we recommend that ERA incorporates a variety of indicators relevant to each aspect of the function of interest, such as a direct measure of a process (e.g., rate of leaf litter breakdown) and a capacity for a process (e.g., functional composition of macroinvertebrates), alongside structural indicators (e.g., taxonomic diversity of macroinvertebrates). Overall, we believe that the consideration of functional indicators can add value to ERA by providing greater ecological relevance, particularly in relation to indirect effects, functional compensation (Box 1), interactions of multiple stressors, and the importance of ecosystem context

    Characterization of distinct Arctic Aerosol Accumulation Modes and their Sources

    Get PDF
    10 pages, 4 figures, 1 table, supplementary data https://doi.org/10.1016/j.atmosenv.2018.03.060In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9–915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012–2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89–91% during February–April, 1–3% during June–August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February–April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June–August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September–October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the ArcticThe study was supported by the Spanish Ministry of Economy through project BIO-NUC (CGL2013-49020-R) and the Ramon y Cajal fellowship (RYC-2012-11922), and by the EU though the FP7-PEOPLE-2013-IOF programme (Project number 624680, MANU – Marine Aerosol NUcleations). The National Centre for Atmospheric Science NCAS Birmingham group is funded by the UK Natural Environment Research Council. [...] This work was financially supported by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region, which is part of the Danish contribution to “Arctic Monitoring and Assessment Program” (AMAP) and the Danish research project “Short lived Climate Forcers” (SLCF), and the Danish Council for Independent Research (project NUMEN, DFF-FTP-4005-00485B). The findings and conclusions presented here do not necessarily reflect the views of the Agency. This work was also supported by the Nordic Centre of Excellence (NCoE) Cryosphere-Atmosphere Interactions in a Changing Arctic Climate (CRAICC). The Villum Foundation is acknowledged for funding the construction of Villum Research Station, Station NordPeer Reviewe
    corecore