47 research outputs found

    Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMEDPlus study

    Get PDF
    Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-to-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health

    Relationship between olive oil consumption and ankle-brachial pressure index in a population at high cardiovascular risk

    Get PDF
    The aim of this study was to ascertain the association between the consumption of different categories of edible olive oils (virgin olive oils and olive oil) and olive pomace oil and ankle-brachial pressure index (ABI) in participants in the PREDIMED-Plus study, a trial of lifestyle modification for weight and cardiovascular event reduction in individuals with overweight/obesity harboring the metabolic syndrome. Methods: We performed a cross-sectional analysis of the PREDIMED-Plus trial. Consumption of any category of olive oil and olive pomace oil was assessed through a validated food-frequency questionnaire. Multivariable linear regression models were fitted to assess associations between olive oil consumption and ABI. Additionally, ABI ≤1 was considered as the outcome in logistic models with different categories of olive oil and olive pomace oil as exposure. Results: Among 4330 participants, the highest quintile of total olive oil consumption (sum of all categories of olive oil and olive pomace oil) was associated with higher mean values of ABI (beta coefficient: 0.014, 95% confidence interval [CI]: 0.002, 0.027) (p for trend = 0.010). Logistic models comparing the consumption of different categories of olive oils, olive pomace oil and ABI ≤1 values revealed an inverse association between virgin olive oils consumption and the likelihood of a low ABI (odds ratio [OR] 0.73, 95% CI [0.56, 0.97]), while consumption of olive pomace oil was positively associated with a low ABI (OR 1.22 95% CI [1.00, 1.48]). Conclusions: In a Mediterranean population at high cardiovascular risk, total olive oil consumption was associated with a higher mean ABI. These results suggest that olive oil consumption may be beneficial for peripheral artery disease prevention, but longitudinal studies are needed

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    New embedded digital front-end for high resolution PET scanner

    No full text

    Study of CT-based positron range correction in high resolution 3D PET imaging

    No full text
    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling. © 2010 Elsevier B.V. All rights reserved.This work has been supported by the MEC (FPA2007-62216), the UCM (Grupos UCM, 910059), the CPAN (Consolider-Ingenio 2010)CSPD-2007-00042, the RECAVA-RETIC network, ARTEMISS2009/DPI-1802, the European Regional Development and ENTEPRASE grant, PSE-300000-2009-5 and the Ministerio de Ciencia e Innovación, Spanish Government.Peer Reviewe

    Real-Time Digital Timing in Positron Emission Tomography

    No full text
    corecore