359 research outputs found

    Reappraisal generation after acquired brain damage:the role of laterality and cognitive control

    Get PDF
    In the past decade, there has been growing interest in the neuroanatomical and neuropsychological bases of reappraisal. Findings suggest that reappraisal activates a set of areas in the left hemisphere (LH), which are commonly associated with language abilities and verbally mediated cognitive control. The main goal of this study was to investigate whether individuals with focal damage to the LH (n = 8) were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions (RH, n = 8), and healthy controls (HC, n = 14). The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sorts. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task, namely difficulty and productivity. A second goal of this study was to explore which cognitive control processes were associated with performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. Findings indicated that reappraisal difficulty � defined as the time taken to generate a first reappraisal � did not differ between LH and RH groups. However, differences were found between patients with brain injury (LH + RH) and HC, suggesting that brain damage in either hemisphere influences reappraisal difficulty. No differences in reappraisal productivity were found across groups, suggesting that neurological groups and HC are equally productive when time constraints are not considered. Finally, only two cognitive control processes inhibition and verbal fluency- were inversely associated with reappraisal difficulty. Implications for the neuroanatomical and neuropsychological bases of reappraisal generation are discussed, and implications for neuro-rehabilitation are considered

    Predictors of care-giver stress in families of preschool-aged children with developmental disabilities

    Get PDF
    Background This study examined the predictors, mediators and moderators of parent stress in families of preschool-aged children with developmental disability. Method One hundred and five mothers of preschool-aged children with developmental disability completed assessment measures addressing the key variables. Results Analyses demonstrated that the difficulty parents experienced in completing specific caregiving tasks, behaviour problems during these caregiving tasks, and level of child disability, respectively, were significant predictors of level of parent stress. In addition, parents’ cognitive appraisal of care-giving responsibilities had a mediating effect on the relationship between the child’s level of disability and parent stress. Mothers’ level of social support had a moderating effect on the relationship between key independent variables and level of parent stress. Conclusions Difficulty of care-giving tasks, difficult child behaviour during care-giving tasks, and level of child disability are the primary factors which contribute to parent stress. Implications of these findings for future research and clinical practice are outlined

    A phase-field model for phase transformations in glass-forming alloys

    Get PDF
    A phase-field model is proposed for phase transformations in glass-forming alloys. The glass transition is introduced as a structural relaxation, and the competition between the glass and crystalline phases is investigated. The simulations are performed for Cu-Zr alloys, employing thermodynamic and kinetic parameters derived from reported thermodynamic modeling and molecular dynamics simulation results,[1–3] respectively. Four distinct phase fields are treated with a multi-phase-field approach, representing the liquid/glass, Cu10Zr7, CuZr, and CuZr2 phases. In addition, a continuum-field method is applied to the liquid to accommodate the liquid–glass transformation. The combined phase-field approach is used to investigate the glass formation tendency, and critical cooling rates are estimated and compared with the reported experimental values

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    An aggravated trajectory of depression and anxiety co-morbid with hepatitis C: : A 21 to 62 month follow-up study in 61 South Australian outpatients

    Get PDF
    BACKGROUND: This study aimed to explore the course of depression and anxiety in chronic hepatitis C patients. METHODS:   Data were combined from two studies: (1) Hospital Anxiety and Depression Scale (HADS) scores in 395 consecutive Australian outpatients from 2006 to 2010 formed the baseline measurement; and (2) Depression Anxiety Stress Scales (DASS) scores in a survey of a sub-sample of these patients in 2011 formed the follow-up measurement. After converting DASS to HADS scores, changes in symptom scores and rates of case-ness (≥8), and predictors of follow-up symptoms were assessed. RESULTS:   Follow-up data were available for 61 patients (70.5% male) whose age ranged from 24.5 to 74.6 years (M=45.6). The time to follow-up ranged from 20.7 to 61.9 months (M=43.8). Baseline rates of depression (32.8%) and anxiety (44.3%) increased to 62.3% and 67.2%, respectively. These findings were confirmed, independent of the conversion, by comparing baseline HADS and follow-up DASS scores with British community norms. Baseline anxiety and younger age predicted depression, while baseline anxiety, high school non-completion, and single relationship status predicted anxiety. CONCLUSION:  This study demonstrated a worsening trajectory of depression and anxiety. Further controlled and prospective research in a larger sample is required to confirm these findings

    The spatiotemporal dynamics of microglia across the human lifespan

    Get PDF
    Microglia, the brain’s resident macrophages, shape neural development and are key neuroimmune hubs in the pathological signatures of neurodevelopmental disorders. Despite the importance of microglia, their development has not been carefully examined in the human brain, and most of our knowledge derives from rodents. We aimed to address this gap in knowledge by establishing an extensive collection of 97 post-mortem tissues in order to enable quantitative, sex-matched, detailed analysis of microglia across the human lifespan. We identify the dynamics of these cells in the human telencephalon, describing waves in microglial density across gestation, infancy, and childhood, controlled by a balance of proliferation and apoptosis, which track key neurodevelopmental milestones. These profound changes in microglia are also observed in bulk RNA-seq and single-cell RNA-seq datasets. This study provides a detailed insight into the spatiotemporal dynamics of microglia across the human lifespan and serves as a foundation for elucidating how microglia contribute to shaping neurodevelopment in humans

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    An EBSD study of the deformation of service-aged 316 austenitic steel

    Get PDF
    Electron backscatter diffraction (EBSD) has been used to examine the plastic deformation of an ex-service 316 austenitic stainless steel at 297K and 823K (24 °C and 550 °C)at strain rates 3.5x10-3 to 4 x 10-7 s-1. The distribution of local misorientations was found to depend on the imposed plastic strain following a lognormal distribution at true strains 0.1. At 823 K (550 °C), the distribution of misorientations depended on the applied strain rate. The evolution of lattice misorientations with increasing plastic strain up to 0.23 was quantified using the metrics kernel average misorientation, average intragrain misorientation, and low angle misorientation fraction. For strain rate down to 10-5 s-1 all metrics were insensitive to deformation temperature, mode (tension vs. compression) and orientation of the measurement plane. The strain sensitivity of the different metrics was found to depend on the misorientation ranges considered in their calculation. A simple new metric, proportion of undeformed grains, is proposed for assessing strain in both aged and unaged material. Lattice misorientations build up with strain faster in aged steel than in un-aged material and most of the metrics were sensitive to the effects of thermal aging. Ignoring aging effects leads to significant overestimation of the strains around welds. The EBSD results were compared with nanohardness measurements and good agreement established between the two techniques of assessing plastic strain in aged 316 steel

    Detection of paralytic shellfish toxins in mussels and oysters using the qualitative neogen lateral-flow immunoassay: an interlaboratory study

    Get PDF
    Paralytic shellfish toxins (PSTs) in bivalve molluscs represent a public health risk and are controlled via compliance with a regulatory limit of 0.8 mg saxitoxin (STX)center dot 2HCl equivalents per kilogram of shellfish meat (eq/kg). Shellfish industries would benefit from the use of rapid immunological screening tests for PSTs to be used for regulation, but to date none have been fully validated. An interlaboratory study involving 16 laboratories was performed to determine the suitability of the Neogen test to detect PSTs in mussels and oysters. Participants performed the standard protocol recommended by the manufacturer and a modified protocol with a conversion step to improve detection of gonyautoxin 1&4. The statistical analysis showed that the protocols had good homogeneity across all laboratories, with satisfactory repeatability, laboratory, and reproducibility variation near the regulatory level. The mean probability of detection (POD) at 0.8 mg STX center dot 2HCl eq/kg using the standard protocol in mussels and oysters was 0.966 and 0.997, respectively, and 0.968 and 0.966 using the modified protocol. The estimated LOD in mussels was 0.316 mg STX center dot 2HCl eq/kg with the standard and 0.682 mg STX center dot 2HCl eq/kg with the modified protocol, and 0.710 and 0.734 mg STX center dot 2HCl eq/kg for oysters, respectively. The Neogen test may be acceptable for regulatory purposes for oysters in accordance with European Commission directives in which the standard protocol provides, at the regulatory level, a probability of a negative response of 0.033 on 95% of occasions. Its use for mussels is less consistent at the regulatory level due to the wide prediction interval around the POD
    corecore