2,654 research outputs found

    Resonant Ultrasonic Particle Manipulators and their Applications in Sensor Systems

    No full text
    The paper describes the use of ultrasonic standing waves as bulk acoustic wave actuators, exploiting the acoustic radiation forces within the standing wave to move biological cells or other particles. This is a technology with the potential to enhance many forms of microflow-based sensors. Example applications discussed include half-wavelength filters, flow-through chambers which move cells from one fluid medium into another (washing the cells), and quarter wavelength chambers that attract cells to a solid boundary such as the face of a sensor. Microfabricated devices are described, including resonators with multiple sub-wavelength resonances, which are driven by multilayer thick film PZT actuators

    A comparative study of four novel sleep apnoea episode prediction systems

    Get PDF
    The prediction of sleep apnoea and hypopnoea episodes could allow treatment to be applied before the event be-comes detrimental to the patients sleep, and for a more spe-cific form of treatment. It is proposed that features extracted from breaths preceding an apnoea and hypopnoea could be used in neural networks for the prediction of these events. Four different predictive systems were created, processing the nasal airflow signal using epoching, the inspiratory peak and expiratory trough values, principal component analysis (PCA) and empirical mode decomposition (EMD). The neu-ral networks were validated with naĂŻve data from six over-night polysomnographic records, resulting in 83.50% sensi-tivity and 90.50% specificity. Reliable prediction of apnoea and hypopnoea is possible using the epoched flow and EMD of breaths preceding the event

    Thermal history of the early Miocene Waitemata Basin and adjacent Waipapa Group, North Island, New Zealand

    Get PDF
    Apatite fission track (AFT) and vitrinite reflectance (VR) data for early Miocene outcrops from the Waitemata Basin reveal that the basin sequence was subjected to shallow burial before denudation. AFT results suggest that the total sediment thickness within the basin was <=1 km and maximum paleotemperatures during burial never exceeded c. 60deg.C. Statistical analyses of the detrital AFT ages distinguish four dominant sources of sediment supply: contemporaneous volcanism; metagreywacke rocks of the Waipapa Group; the Northland Allochthon; and an unidentified source south of the basin. The apatite and zircon fission track results from the Waipapa Group rocks (Gondwana Terrane) adjacent to the basin suggest two discrete phases of accelerated cooling: the first during the early Cretaceous (c. 117 Ma) and the second during the mid Cretaceous (c. 84 Ma). These events probably reflect key stages in the tectonic development of the New Zealand microcontinent during the Cretaceous period, the earlier event being related to the climax of compressional deformation (Rangitata Orogeny) and the latter to extensional tectonism associated with the opening of the Tasman Sea. Waipapa Group rocks now exposed at the surface cooled from maximum paleotemperatures of c. 250deg.C at an estimated rate of c. 180-36deg.C/m.y., involving substantial denudation

    A higher dimensional explanation of the excess of Higgs-like events at CERN LEP

    Get PDF
    Searches for the SM Higgs boson by the four LEP experiments have found a 2.3 sigma excess at 98 GeV and a smaller 1.7 sigma at around 115 GeV. We interpret these excesses as evidence for a Higgs boson coupled to a higher dimensional singlet scalar. The fit implies a relatively low dimensional mixing scale mu_{lhd} < 50 GeV, which explains the low confidence level found for the background fit in the range s^{1/2} > 100 GeV. The data show a slight preference for a five-dimensional over a six-dimensional field. This Higgs boson cannot be seen at the LHC, but can be studied at the ILC.Comment: 9 page

    Granular clustering in a hydrodynamic simulation

    Full text link
    We present a numerical simulation of a granular material using hydrodynamic equations. We show that, in the absence of external forces, such a system phase-separates into high density and low density regions. We show that this separation is dependent on the inelasticity of collisions, and comment on the mechanism for this clustering behavior. Our results are compatible with the granular clustering seen in experiments and molecular dynamic simulations of inelastic hard disks.Comment: 4 pages, 5 figure

    New spectra in the HEIDI Higgs models

    Full text link
    We study the so-called HEIDI models, which are renormalizable extensions of the standard model with a higher dimensional scalar singlet field. As an additional parameter we consider a higher-dimensional mixing mass parameter. This leads to enriched possibilities compared to a previous study. We find effective spectral densities of the Higgs propagator, consisting of one, two or no particle peaks, together with a continuum. We compare with the LEP-2 data and determine for which range of the model parameters the data can be described. Assuming two peaks to be present we find for the new mass scale \nu\approx 56\pm12 \gev, largely independent of the dimension. In the limiting case of d→6d\rightarrow 6 and two peaks we find a higher dimensional coupling constant α6=0.70±0.18\alpha_6=0.70 \pm 0.18, indicative of strong interactions among the higher dimensional fields. The LHC will not be able to study this Higgs field.Comment: 17 pages, 4 figure

    Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: implications for athlete welfare

    Get PDF
    To test the hypothesis that daily weight-making is more problematic to health in male compared with female jockeys, we compared the bone-density and resting metabolic rate (RMR) in weight-matched male and female Flat-jockeys. RMR (kcal.kg-1 lean mass) was lower in males compared with females as well as lower bone-density Z-scores at the hip and lumbar spine. Data suggest the lifestyle of male jockeys’ compromise health more severely than females, possibly due to making-weight more frequently

    Blue laser cooling transitions in Tm I

    Full text link
    We have studied possible candidates for laser cooling transitions in 169^{169}Tm in the spectral region 410 -- 420 nm. By means of saturation absorption spectroscopy we have measured the hyperfine structure and rates of two nearly closed cycling transitions from the ground state 4f136s2(2F0)(Jg=7/2)4\textrm{f}^{13}6\textrm{s}^2(^2\textrm{F}_0)(J_g=7/2) to upper states 4f12(3H5)5d3/26s2(Je=9/2)4\textrm{f}^{12}(^3\textrm{H}_5)5\textrm{d}_{3/2}6\textrm{s}^2(J_e=9/2) at 410.6 nm and 4f12(3F4)5d5/26s2(Je=9/2)4\textrm{f}^{12}(^3\textrm{F}_4)5\textrm{d}_{5/2}6\textrm{s}^2(J_e=9/2) at 420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and 48(6) ns respectively. Decay rates from these levels to neighboring opposite-parity levels are evaluated by means of Hartree-Fock calculations. We conclude, that the strong transition at 410.6 nm has an optical leak rate of less then 2⋅10−52\cdot10^{-5} and can be used for efficient laser cooling of 169^{169}Tm from a thermal atomic beam. The hyperfine structure of two other even-parity levels which can be excited from the ground state at 409.5 nm and 418.9 nm is also measured by the same technique. In addition we give a calculated value of 7(2)7(2) s−1^{-1} for the rate of magnetic-dipole transition at 1.14 ÎŒ\mum between the fine structure levels (Jg=7/2)↔(Jgâ€Č=5/2)(J_g=7/2)\leftrightarrow(J'_g=5/2) of the ground state which can be considered as a candidate for applications in atomic clocks.Comment: 8 pages, 5 figure

    The rare top quark decays t→cVt\to cV in the topcolor-assisted technicolor model

    Full text link
    We consider the rare top quark decays in the framework of topcolor-assisted technicolor (TC2) model. We find that the contributions of top-pions and top-Higgs predicted by the TC2 model can enhance the SM branching ratios by as much as 6-9 orders of magnitude. i.e., in the most case, the orders of magnitude of branching ratios are Br(t→cg)∌10−5Br(t\to c g)\sim 10^{-5}, Br(t→cZ)∌10−5Br(t\to c Z)\sim 10^{-5}, Br(t→cÎł)∌10−7Br(t\to c \gamma)\sim 10^{-7}. With the reasonable values of the parameters in TC2 model, such rare top quark decays may be testable in the future experiments. So, rare top quark decays provide us a unique way to test TC2 model.Comment: 14 pages, 4 figure
    • 

    corecore