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ABSTRACT 

The prediction of sleep apnoea and hypopnoea episodes 
could allow treatment to be applied before the event be-
comes detrimental to the patients sleep, and for a more spe-
cific form of treatment.  It is proposed that features extracted 
from breaths preceding an apnoea and hypopnoea could be 
used in neural networks for the prediction of these events.  
Four different predictive systems were created, processing 
the nasal airflow signal using epoching, the inspiratory peak 
and expiratory trough values, principal component analysis 
(PCA) and empirical mode decomposition (EMD).  The neu-
ral networks were validated with naïve data from six over-
night polysomnographic records, resulting in 83.50% sensi-
tivity and 90.50% specificity.  Reliable prediction of apnoea 
and hypopnoea is possible using the epoched flow and EMD 
of breaths preceding the event. 

1. INTRODUCTION 

Obstructive sleep apnoea (OSA) is the repeated pause in 
breathing during sleep due to the obstruction and collapse 
of the upper airway.  OSA is the most common medical 
disorder causing excessive daytime sleepiness affecting 4% 
of men and 2% of women [1].  Excessive daytime sleepi-
ness results from the transient arousals that occur in re-
sponse to the increased inspiratory effort to maintain ade-
quate ventilation [2].  There is growing association between 
OSA, obesity, hypertension and other cardiovascular dis-
eases [3], as well as the long-term development of meta-
bolic disorders, such as diabetes mellitus[4]. 
 
The ‘gold standard’ test for the diagnosis of OSA is poly-
somnography (PSG), a multi-signal technique for the moni-
toring of sleep and its stages, and the monitoring of respira-
tion.  PSG records many biosignals, including, but not lim-
ited to: electroencephalogram (EEG), electrooculogram 
(EOG), electromyogram (EMG) of the chin and legs, elec-
trocardiogram (ECG), respiratory function (i.e. airflow, 
chest wall movement and pulse oximetry), body position 
and snoring using a microphone. 
 
The most commonly prescribed treatment for OSA is con-
tinuous positive airway pressure, or CPAP.  It is the general 
view that PAP works like a pneumatic splint for the upper 

airway, preventing its collapse against negative inspiratory 
pressure and stabilising the upper airway [5].  CPAP treat-
ment continually applies air to the nose and/or mouth, pre-
venting the apnoea from occurring, therefore having high 
sensitivity but low specificity.  CPAP is not well tolerated 
due to nasal and oral dryness and mask discomfort [6].  
This leads to patients failing to comply, which can have 
severe consequences, because OSA will only improve 
while treatment is used, and it will return to its original se-
verity when treatment stops. 
 
The focus of research into OSA has been on reducing the 
number of channels required for diagnosis, with researchers 
concentrating on cardiorespiratory parameters (mainly heart 
rate variability and pulse oximetry).  These signals are able 
to detect apnoeas, but in the case of pulse oximetry, hypop-
noeas are not always detected.  The response to the apnoea 
event, measured in the cardiorespiratory signals, occurs 
after the start of the event.  The delay in response is de-
pendent on the haemodynamic status of the patient [7] and 
a lag of many seconds may be present [8].   
 
There is a need for a device that can predict the likelihood 
of an apnoea event in the time preceding its generation and 
before it has a detrimental effect.  There are few devices 
that have the ability to predict the onset of apnoea for pa-
tients who have already been diagnosed.  A positive airway 
pressure device [9] recognizes the snoring pattern as being 
a parameter for the detection of imminent onset of apnoeas.   
 
The airflow signal has been used in the development of a 
single channel monitor for the screening of sleep-disordered 
breathing [10].  The algorithm developed uses power spec-
tral analysis to analyse the variation in amplitude of the 
airflow signal, and gave diagnostic sensitivity of 96% and 
76% specificity.  Aittokallio et al [11] used flow shape 
analysis in the reduction of redundant information to de-
crease the amount of time to score overnight sleep re-
cordings.  The ultimate aim of the work was to develop a 
simple method for the rapid monitoring of sleep disordered 
breathing. 
 
Inspiratory flow shape analysis has also been used in con-
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tinuous positive airway pressure devices [9, 12, 13].  These 
methods look at the roundness of the inspiratory airflow 
signal and adjust the CPAP pressure applied until the flow 
contour is more rounded, which coincides with adequate 
airway patency.  Montserrat et al [13] suggests that the 
characteristics of the inspiratory flow contour are a good 
marker of the level of upper airway stability and it should 
be used in finding the optimal level of CPAP pressure.   
 
This paper presents a comparative study assessing whether 
the nasal airflow signal as recorded during PSG could be 
used in the prediction of sleep apnoea episodes.  It is be-
lieved that the airflow signal is the primary signal that can 
record the instant that an apnoea occurs.  Prediction was 
performed using four different neural networks, with four 
different inputs: (i) epoched flow signal, (ii) inspiratory 
peak and expiratory trough values, (iii) weights calculated 
from principal component analysis and (iv) intrinsic mode 
functions; each of which will be outlined in the methodol-
ogy section. 

2. METHODOLOGY 

2.1 Subject Data 
Full polysomnographic data was obtained for 39 patients 
(24 male) with a mean ± standard deviation age of 39.31 ± 
13.18.  Data from six patients (3 male) was reserved as un-
seen data for validation of the created neural networks, with 
age of 41.83 ± 10.74.  Further patient characteristics can be 
see in table I. 

 
 Original Patients Unseen Patients 
Subjects 39 6 
Males (%) 61.54 50 
Age (years) 39.31 ± 13.18 41.83 ± 10.74 
BMI (kg/m2) 27.89 ± 7.65 30.76 ± 3.91 
AHI (no./hr) 21.35 ± 31.48 20.23 ± 33.74 

Table 1 - Patient Characteristics. Data is shown in mean ± 
standard deviation.  BMI - body mass index,  AHI - ap-

noea/hypopnoea index. 

The PSG data was obtained from the Edinburgh Sleep Cen-
tre using Alice 5, (Respironics) recording 18 channels of 
data.  The channels recorded were left and right EOG, four 
channels of EEG (C3A2, C4A1, O1A2, O2A1), chin EMG 
recorded from electrodes placed under the chin, air-flow 
with a nasal cannula, thoracic and abdominal motion, mi-
crophone or vibration sensor placed on the side of the neck 
for snoring, two channels of ECG, finger pulse oximetry, 
body position, and left and right leg movement.  The PSG 
data was manually scored by trained clinical staff, identify-
ing obstructive, central (cessation in breathing due to neuro-
logical condition) and mixed apnoeas (starts as a central 
event and progresses to obstructive), hypopnoeas (reduction 
in airflow) and other events that were not used in this work. 

2.2 Predictive System 
The predictive system is illustrated in figure 1.  The system 
is composed of two main stages: signal conditioning and 
prediction using neural networks.  The nasal airflow signal 
is first epoched and the peak and trough values from the 
breath are extracted.  The epoched flow signal is then con-
ditioned using principal component analysis (PCA), and 
empirical mode decomposition (EMD) [14].  These signals 
are then used to create four neural networks that are used to 
classify the apnoea and hypopnoea (class I) and normal 
episodes (class II). 
 

 
Figure 1. Flow diagram of the predictive system.  Pk&Tr - 

Inspiratory peak and expiratory trough, PCA - Principal 
component analysis, EMD - Empirical mode decomposition, 

NN - Neural network. 

2.3 Airflow Signal Extraction 
The airflow signals were extracted from the PSG data and 
periods of obstructive, central and mixed apnoeas, hypop-
noeas and periods of normal breathing were identified 
within the data.   
 
The original airflow signal was epoched for a sequence of 
flow data before an apnoea and hypopnoeas.  The inspira-
tory peak values and expiratory troughs were also identified 
within each flow signal.  The epoched flow signals and the 
peak and trough values were used as inputs to the neural 
network. 

2.4 Principal Component Analysis 
Principal component analysis (PCA) [15] was used in the 
reduction of the data set.  The weights were determined 
from the epoched flow signal, and were then used as an 
input to the neural network.   
 
A training set, Γ, was created from two thirds of the ap-
noeas, hypopnoeas and normals.  The mean flow signal was 
then calculated, 

 ∑ =
Γ=Ψ

m

n nM 1
1

Ψ−Γ=

 (1) 

The difference between each flow signal and the mean was 
calculated 

Φ ii  (2)  
The covariance matrix was then determined 
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where .  The eigenvalues and eigenvec-

tors were then calculated from the covariance matrix, and 
the eigenvalues were sorted into descending order and the 
top 20% were chosen.  The flow signals, from the training 
and testing set, were then transformed into eigenflow com-
ponents, the weights, using 

]...[ 21 Mn ΦΦΦ=Φ

  (4) ( Ψ−Γ= T
kk uw )

nnn mIMF −

where wk is the eigenflow, uk
T is the eigenvector, Γ the flow 

signal, and Ψ the mean flow image.  The eigenflow were 
then used as an input to the neural network. 

2.5 Empirical Mode Decomposition 
Empirical mode decomposition (EMD) is a nonlinear tech-
nique used to represent non-stationary signals [14].  Nasal 
airflow signals are non-stationary due to the variation in 
respiration [16].  EMD decomposes a signal by generating 
intrinsic modes functions (IMF), which will extract the en-
ergies associated with the intrinsic time scales. 
 
The epoched flow signals, Γn, are analysed and the maxima 
and minima are located.  The maxima are connected by a 
cubic spline line to create the upper envelope and this is 
repeated for the minima, creating the lower envelope, the 
mean of the envelopes is calculated, mn.  The detail, or the 
intrinsic mode, is extracted using  
 Γ=

11 ++

 (5) 
and this should be the first IMF.  The IMF must satisfy two 
conditions: the first condition is that in the whole data the 
IMF must have an equal number of extrema and number of 
crossings or they can differ by at most one and the second 
condition is that the mean value calculated from the enve-
lopes is zero.  If these conditions are not satisfied then a 
sifting process is carried out, to eliminate riding waves and 
to make the wave profile more symmetric, 
 −= nnn mhh

11 IMFr n

 (6) 
where h1 is the difference between the original image and 
the mean.  In reality, due to the nature of most signals, a 
sifting process has to be carried out.  Sifting is repeated 
until the conditions are satisfied. 
The first IMF should contain the finest scale or the shortest 
period component of the signal.  It is then separated from 
the rest of the data, and the residual is treated as the new 
data and the sifting process is then repeated, 
 −Γ=   (7) 
The process can be repeated on all the subsequent residuals 
until the signal becomes so small that no more IMFs can be 
extracted.  The sum of the IMFs and the residuals allows 
the original data to be re-created.  The first IMF is related to 
the highest frequency and the last to the lowest frequency. 
The intrinsic mode function was then used in the neural 
network for the prediction of sleep apnoea episodes 

2.6 Prediction of Events Using Neural Networks 
The prediction of the airflow signal as apnoea/hypopnoea 
(class I) or normal (class II) was performed using two stage 
multi-layer perceptron neural networks.  Four different 
networks were created for the four different inputs: epoched 
flow signal, inspiratory peak and expiratory trough values, 
eigenflow from PCA and the IMF from empirical mode 
decomposition.   
 
The neural networks were created using episodes extracted 
from 39 sets of patient data.  The apnoeas and hypopnoeas, 
and normal periods were separated into training and testing 
sets, with two thirds of the data in the training set and a 
third in the testing set.  The training set comprised 1200 
apnoeas, 1200 hypopnoeas and 2400 normals, and the test-
ing set was 600 apnoeas, 600 hypopnoeas and 1200 normal 
periods.   
 
Validation of the prediction networks was carried out using 
naïve data from 6 patients; this data had not been used in 
the adaptation of the neural network.  This data set was 
composed of 300 apnoeas, 300 hypopnoeas and 600 normal 
periods. 

3. RESULTS 

Four different, two stage neural networks, were created 
using the epoched airflow signal, the inspiratory peak and 
expiratory trough values, the eigenflow components from 
PCA and the intrinsic mode function from the EMD of the 
breath before an apnoea and hypopnoea.  The reliability of 
the neural networks was measured using sensitivity and 
specificity.  Sensitivity is the percentage of flow signals 
that are correctly classified as class I (apnoea and hypop-
noea).  The specificity is the percentage of events that are 
correctly classified as class II (normal).   
 

Sensitivity and Specificity for 
testing Neural Networks with 

Testing and Validation Patient Data
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Figure 3 - Results for testing with original patient set and 
validation data.  Solid black column is the sensitivity from 
the original testing data, black with white spots is the sensi-
tivity from the validation data, Solid grey is the specificity 

for the original testing data, and the grey with white spots is 
the specificity from the validation data. 
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The results for the prediction of sleep apnoea and hypop-
noea are shown in figure 3.  The figure shows the sensitivi-
ties and specificities for testing with the original set of pa-
tient data and the validation testing set. 
 
The greatest overall reliability, for testing with the original 
patient data, was recorded using the epoched flow signal as 
the input to the neural network, with 77.75% sensitivity and 
83.33% specificity, although the EMD and peak and trough 
have very similar value for the specificity, 83.08% and 
82.08%, respectively, but lower sensitivity.  The network 
created using the eigenflow components from the PCA per-
formed the poorest, with 65.67% sensitivity and 68.25% 
specificity. 
 
The neural networks’ performance was also high when 
tested with validation data.  An average improvement in 
sensitivity of 12% was recorded for the four methods, al-
though specificity was only improved an average of 3%.  
The pre-processing method that gave the greatest reliability 
was the epoched flow signal with 83.51% sensitivity and 
90.50% specificity.  Empirical mode decomposition 
showed greater sensitivity but the specificity was slightly 
lower, 85.67% and 82.17% respectively. 

4. DISCUSSION 

The results of this study show that it is possible to predict 
when apnoea and hypopnoea episodes are going to occur 
using only the nasal airflow signal with high sensitivity and 
specificity.   
 
The method proposed in this paper was to predict when 
apnoea and hypopnoea episodes are going to occur, using 
the nasal airflow signals.  The airflow signals are simple to 
record and can show the instant an episode occurs.  It has 
been shown that this method can predict imminent events 
with 83.50% sensitivity and 90.50% specificity. 
 
Future research will focus on the development of a real-
time prediction system, as this method is currently carried 
out off-line.  This work will also be incorporated into a de-
vice for the treatment of imminent apnoea, before the epi-
sode becomes detrimental to the patients sleep. 
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