Response of stream ecosystems to climate change (III): characterizing and predicting flow regimes

David Tarboton, Sulochan Dhungel, Charles P. Hawkins, Jacob J. Vander Laan, Ryan A. Hill and Jiming Jin

Objectives

- Characterize current spatial patterns in ecologically important streamflow properties across the USA
- Assess likely effects of climate change on streamflow regimes
- Support stream biodiversity modeling

Outline

- Selection of ecologically relevant streamflow properties (streamflow regime)
- Data (USGS GAGES, Catchment Features, Climate)
- Flow regime classification and prediction
- Predicted climate-driven changes in flow regimes

16 variables used to characterize 5 ecologically important aspects of streamflow

(Magnitude, Timing, Rate of Change, Duration, Frequency)

- 1. Extended Low Flow Index
- 2. Coefficient of Variation
- 3. Mean Daily Discharge
- 4. 7 Day Minimum
- 5. 7 Day Maximum
- 6. Bank Full Flow (Q167)
- 7. Flood Duration (Days > Q167)
- 8. Colwell's Index of Predictability

- 9. Colwell's Index of Constancy
- 10. Colwell's Index of Contingency
- 11. Flow Reversals Per Year
- 12. 50% Flow Date
- 13. Time of Peak
- 14. Number of High Flow Events (>Q95)
- 15. Number of Low Flow Events (<Q5)
- 16. Number of Zero Flow Events

Data

- Daily streamflow USGS GAGES reference stations (Falcone et. al., 2010)
- PRISM precipitation and temperature (Daly et al., 2008)
- Downscaled Climate forecasts. CCSM A2 scenario -> WRF at 50 km scale downscaled statistically to 4 km based on PRISM

Active USGS GAGES reference stations 1400 601 sites 1200 90% complete • record 1000 1965-2010 Number 800 600 1965-2010 400 200 1 0 1940 1960 1880 1900 1920 1980 2000

James A. Falcone, Daren M. Carlisle, David M. Wolock, and Michael R. Meador. 2010. GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. *Ecology* 91:621.

Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis and P. P. Pasteris. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. *International Journal of Climatology* 28: 2031-2064.

Reference-quality USGS GAGES Stations

Characterized each catchment with 34 climate, 7 soil, and 10 geomorphology variables

Climate Projections CCSM A2 + WRF

Analysis Steps

PCA (Loadings)

	PC1	PC2	PC3	PC4	PC5
Extended Low Flow Index (ELFI)	0.83	0.05	0.05	0.15	-0.14
Coefficient of Variation of Daily Flows (DAYCV)	-0.82	-0.07	0.07	0.04	0.36
Contingency (M)	0.67	-0.01	-0.44	-0.23	0.1
Low Flow Event (LFE)	0.84	0.13	0.29	0.02	-0.05
Zero Flow Event (ZFE)	-0.85	-0.17	-0.01	0.05	0.22
Average 7 day Minimum Flow (Qmin7)	0.71	0.58	0.01	0.07	-0.25
Mean daily discharge (QMEAN)	0.31	0.93	0.03	-0.08	-0.14
Bank Full Flow (Q167)	0.01	0.97	0.21	-0.12	0
Average 7 day Maximum Flow (Qmax7)	0.08	0.99	0.03	-0.07	-0.01
Flow Reversal(R)	0.54	0.12	0.68	0	-0.14
Flood Duration (FLDDUR)	0.09	-0.07	-0.84	0.2	0.18
High Flow Event (HFE)	0.02	0.1	0.91	-0.22	-0.07
50% timing of flow (T50)	0.04	-0.11	-0.36	0.79	0.2
Time of Peak (Tp)	-0.02	-0.09	-0.08	0.89	-0.01
Predictability (P)	-0.3	-0.08	-0.36	0.05	0.86
Constancy (C)	-0.56	-0.11	-0.1	0.2	0.73
Proportion of variance explained (cumulative)	0.28	0.21 (0.49)	0.16 (0.65)	0.1 (0.75)	0.11 (0.86)
Interpretation	Low Flow (L)	Magnitude (M)	Flashiness (F)	Timing (T)	Constancy (C)

(Magnitude, Timing, Rate of Change, Duration, Frequency)

Ward's Hierarchical Cluster Analysis (Euclidean Distance on Rotated PCAs)

Characteristics of 3 Coarse Stream Classes

Characteristics of A-Type Streams

Characteristics of B-Type Streams

Characteristics of C-Type Streams

Geography of Stream Regime Classes

Random Forest Model Performance

Classification error

Predicted Climate-Driven Changes in Stream Classes (present to 2090s)

Confusio	n Matrix	Predicted (2090 -2099)								
(2090-2099)		A1	A2	B1	B21	B22	C1	C21	C22	Change %
0	A1	56	1	1					1	5%
010	A2		29							0%
- 2	B1			45		3	2	2	9	26%
01	B21			1	8	5	3	9	1	70%
20	B22			5	1	22	9	3	13	58%
del	C1	1		2	1	2	75	7	5	19%
700	C21		1	10	12		35	104	9	39%
	C22		3	2	1		10	2	90	17%

Concluding Remarks

- Did we adequately characterize ecological important aspects of flow?
- Prediction to ungauged (or future) streams is a critical challenge. Low-flow is most problematic.
- Will streams switch between perennial and intermittent? These types of changes have very different implications for stream biodiversity.

Questions?

Extra slides

Extended Low Flow Index (ELFI)

Combined Fraction of Zero Flow Days (ZFD) and Baseflow Index (BFI) to characterize low flow

Timing variables

All the streamflow variables were calculated based on water year (Oct – Sep)

Streamflow Predictability (P), Constancy (C) and Contingency (M) Colwell (Ecology 1974, 55:1148-1153)

Entropy measure of uncertainty

$$H = -\sum p \log p$$

- Predictability (P) is entropy measure of uncertainty scaled from 0 (uncertain) to 1 (certain)
- Constancy (C) is entropy measure of uncertainty scaled from 0 to 1 without regard for period
- Contingency (M=P-C) scales the mutual information of time and state from 0 (unrelated) to 1 (dependent)

Colwell's Predictability (P), Constancy (C) and Contingency (M)

Periods / States	1	2	3	4	Total	
> 3 * Qmean			50		50	
2 - 3 * Qmean	50				50	P=1.
1 - 2 * Qmean		50			50	,
< Qmean				50	50	

P=1.	C=0.	M=1
•••	\mathbf{C} \mathbf{C} ,	

⊃=C+	Μ
------	---

 Periods / States
 1
 2
 3
 4
 Total

 > 3 * Qmean
 I
 I
 I
 I
 I
 I

 2 - 3 * Qmean
 I
 I
 I
 I
 I
 I
 I

 1 - 2 * Qmean
 50
 50
 50
 200
 I
 I
 I

Climate, Soil and Geomorphological Properties Evaluated for each Watershed

Climate Minimum Temp Maximum Temp **Diff in Temp** Amplitude of Temp Standard Deviation of Max Temp Standard Deviation of Min Temp Potential Evapotranspiration **Dryness Index** Potential Evapotranspiration Amplitude Seasonality Total Snow (Mean T) Mean Temp Mean Precipitation **Minimum Precipitation Maximum Precipitation Precipitation Range** Amplitude of Precipitation Timing of 50% Precipitation **Relative Humidity** Monthly scaled Precipitation (12 months) Percent of Snow Total Snow Percent Snow (Mean T)

Soil

Available water capacity of soil Soil Bulk Density Soil organic matter content Soil Permeability Average Water table height Depth to bedrock Gleeson Permeability

Geomorphology Minimum Elevation Maximum Elevation Elevation Range Standard Deviation of Elevation Hypsometric Convexity Mean Slope Standard Deviation of Slope Area Shape Mean Elevation

- •
- -

Characteristics of 3 Coarse Stream Classes

L = Low Flow F = Flashiness

M = Magnitude

T = Timing C = Constancy

Characteristics of A-Type Streams

Characteristics of B-Type Streams

Characteristics of C-Type Streams

