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Where is Heidi hiding ?

Heidi is hidden

in the high-D Higgs Hill !

A higher dimensional explanation of the

excess of Higgs-like events at CERN LEP
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Abstract

Searches for the SM Higgs boson by the four LEP experiments have found a
2.3 σ excess at 98 GeV and a smaller 1.7 σ at around 115 GeV. We interpret
these excesses as evidence for a Higgs boson coupled to a higher dimensional
singlet scalar. The fit implies a relatively low dimensional mixing scale µlhd <
50 GeV, which explains the low confidence level found for the background fit
in the range s1/2 > 100 GeV. The data show a slight preference for a five-
dimensional over a six-dimensional field. This Higgs boson cannot be seen at
the LHC, but can be studied at the ILC.

With the latest developments from high energy colliders like LEP and the
Tevatron the standard model (SM) has been established up to the loop level.
The main missing ingredient is the direct detection of the SM Higgs boson.
The four LEP experiments ALEPH, DELPHI, L3 and OPAL have extensively
searched for the Higgs boson. The final combined result has been published
in [1]. The absence of a clear signal has led to a lower limit on the Higgs bo-
son mass of 114.4 GeV at the 95% confidence level. Although no clear signal
was found the data have some intriguing features, that can be interpreted as
evidence for Higgs bosons beyond the standard model. There is a 2.3 σ effect
seen by all experiments at around 98 GeV. A somewhat less significant 1.7 σ
excess is seen around 115 GeV. Finally over the whole range s1/2 > 100 GeV
the confidence level is less than expected from background.

Within the minimal supersymmetric standard model (MSSM) and other ex-
tensions [2-5], the excesses at 98 GeV and 115 GeV were interpreted as evi-
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dence for the presence of two Higgs bosons Hi with couplings reduced by a
factor αi to matter g2

i = αi g
2
SM−Higgs. We will call such Higgs bosons frac-

tional Higgses in the following. The excess at 98 GeV is well described by a
10% fractional Higgs. More precisely [2] gives limits 0.056 < α98 < 0.114 and
a mass range 95 GeV < mHiggs < 101 GeV. The second peak at 115 GeV is
then interpreted as a second Higgs boson with α115 = 0.9. The first peak at
98 GeV is rather convincing. The second one at 115 GeV is compatible with
the data, but not really preferred as the data at 115 GeV are also compatible
with pure background with a similar confidence level. The data correspond
roughly to background plus one half of a Higgs boson, however with a large
uncertainty. The MSSM fit is therefore not completely satisfactory and it is
natural to look for other extensions to describe the data.

Actually the precision measurements leave only very little space for extensions,
as these tend to spoil the agreement with experiment due to a variety of ef-
fects, one of the most important of which is the appearance of flavor-changing
neutral currents. Even the MSSM has to finely tune a number of parameters.
This leaves only one type of extensions that are safe, namely the singlet exten-
sions. Experimentally right handed neutrino’s appear to exist. Since these are
singlets a natural extension of the SM is the existence of singlet scalars too.
These will only have a very limited effect on radiative corrections, since they
appear only in two-loop calculations. For a mini-review on singlet extensions
see [7].

In this letter we will try to fit the data within the specific model of a SM
Higgs boson coupled to a higher dimensional (d = 5, 6) singlet scalar, where
we assume that the higher dimensions are open and flat. This leads to a Higgs
propagator of the form:

DH H(q2) =
[

q2 + M2 − µ8−d
lhd (q2 + m2)

d−6

2

]−1
. (1)

The masses M , m and µlhd are the free parameters of the model and are de-
fined more precisely later. The scale µlhd stands for low-to-high-dimensional
mixing mass and measures the coupling of the high-d singlet scalar and the 4-d
doublet. The propagator contains a particle peak and a continuum. This model
has, like the MSSM, three free parameters to fit the data. We will take the
excess at 98 GeV at face value and interpret it as the delta-peak in the prop-
agator. The excess at 115 GeV is interpreted as an enhancement due to the
continuum of the Higgs propagator. Because of the uncertainty of this excess
we will only demand that a Higgs integrated spectral density

∫

ρ(s)ds > 30%
is present in the range 110 GeV < s1/2 < 120 GeV. We will find that with
these conditions one gets a relatively small highdimension-lowdimension mix-
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ing scale µlhd < 50 GeV. This result has a non-trivial consequence. It implies
that the continuum starts very close to the delta-peak. This would therefore
explain why in the range s1/2 > 100 GeV the confidence level of the data is
less than expected for background. This cannot be explained by the MSSM.

The effects of singlets appear in two forms, one is the mixing with the SM
Higgs, the other is invisible decay. In this paper we are interested in pure
mixing models. It is actually possible to have a Higgs model that has only
Higgs-mixing. If one starts with an interaction of the form HΦ†Φ, where H
is the new singlet Higgs field and Φ the SM Higgs field, no interaction of the
form H3 or H4 is generated with an infinite coefficient [6]. Therefore one can
leave the H3 and H4 interactions out of the Lagrangian without violating
renormalizability. This type of model can easily be extended to more fields
Hi. The situation becomes quite interesting, when one allows for an infinite
number of fields, in particular when one assumes the field H to be moving in
d = 4 + δ dimensions. Normally speaking this would lead to a nonrenormaliz-
able theory. However since the only interaction is of the form HΦ†Φ, which is
superrenormalizable in four dimensions, the theory stays renormalizable. An
analysis of the power counting of divergences shows that one can associate the
canonical dimension 1 + δ/2 to the H-field. This means that the theory stays
renormalizable as long as δ ≤ 2. When one assumes, that the extra dimen-
sions are compact, for instance a torus, with radius R = L/2π, one can simply
expand the d-dimensional field H(x) in terms of Fourier modes:

H(x) =
1√

2Lδ/2

∑

~k

H~k(xµ) ei 2π
L

~k~x, H~k = H∗

−~k
. (2)

Here xµ is a four-vector, ~x is δ-dimensional and the δ components of ~k take
only integer values.

One then finds a Lagrangian of the form:

L = −1

2
DµΦ

†DµΦ−1

2

∑

(∂µHk)
2+

M2
0

4
Φ†Φ−λ

8
(Φ†Φ)2−

∑ m2
k

2
H2

k−
g

2
Φ†Φ

∑

Hk .

(3)

The masses of the Hk fields are given by m2
k = m2

0 + m2
d
~k2. Here ~k is a

δ-dimensional vector and m0 is a d-dimensional mass term for the field H .
This term is necessary to insure stability of the vacuum. The last term can be
written as a so-called brane-bulk term

S =
∫

d4+δx
δ

∏

i=1

δ(x4+i)H(x)Φ†Φ. (4)

This Lagrangian leads to spontaneous symmetry breaking. Both the Φ-field
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and the Hk-fields will receive a vacuum expectation value, which we call v
respectively hk. In the unitary gauge we write Φ = v + φ and Hk = hk + xk.

The conditions for the minimum of the potential V ′ = 0 read:

∂V

∂Φ
|v,hk

=
λ

2
v3 − M2

0

2
v + gv

∑

k

hk = 0, (5)

∂V

∂Hk
|v,hk

= m2
khk +

gv2

2
= 0, (6)

⇒ v2 =
M2

0

λ − g2
∑

k
1

m2

k

; hk =
−gM2

0

2m2
k(λ − g2

∑

k
1

m2

k

)
. (7)

From the second derivatives one then finds the mass matrix :

Lmass =
−M2

2
φ2 −

∑

k

m2
k

2
x2

k + gvφ
∑

k

xk, (8)

with M2 = 3
2
λv2 − M2

0

2
+ g

∑

k hk = λv2.

One can derive the Higgs propagator without knowing the eigenstates ex-
plicitely by inverting the matrix:

Dij(q
2)−1 =















q2 + M2 −gv . . .

−gv q2 + m2
i 0

... 0
. . .















. (9)

First we define the auxiliary quantity Q:

Q = 1 −
∑

k

g2v2

(q2 + M2)(q2 + m2
k)

. (10)

Dij(q
2) is found to be:

Dij(q
2) =

1

Q









1
q2+M2

gv
(q2+M2)(q2+m2

j
)

gv
(q2+M2)(q2+m2

i
)

(

Q
q2+m2

i

δij + g2v2

(q2+M2)(q2+m2

i
)(q2+m2

j
)

)









. (11)

In the continuous case the Higgs propagator, which corresponds to the (1,1)
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component of D, becomes:

DH H(q2) =

[

q2 + M2 − g2v2 Γ(1 − δ/2)

(4π)δ/2
(q2 + m2

0)
δ−2

2

]−1

. (12)

After redefining variables this becomes:

DH H(q2) =
[

q2 + M2 − µ8−d
lhd (q2 + m2)

d−6

2

]−1
. (13)

We will now consider in more detail the two cases d = 5 and d = 6 separately
and compare these with the data. Other values of d are in principle possible,
but have no simple physical interpretation as higher dimensional fields.

First we consider the case d = 5. The propagator becomes of the form:

DH H(q2) =
[

q2 + M2 − µ3
lhd(q

2 + m2)−1/2
]−1

. (14)

This corresponds to a Källén-Lehmann spectral density:

ρ(s) = θ(m2 − s)
2(m2 − speak)

3/2

2(m2 − speak)3/2 + µ3
lhd

δ(s − speak)

+
θ(s − m2)

π

µ3
lhd (s − m2)1/2

(s − m2)(s − M2)2 + µ6
lhd

, (15)

where speak satisfies:

speak − M2 + µ3
lhd(m

2 − speak)
−1/2 = 0. (16)

The peak always exists at a positive value of speak as long as µ3
lhd < mM2,

which we assume satisfied, since this corresponds to the condition that we
expand around a minimum of the potential. Actually this form of the spectral
density is only correct as long as M > m. In the case m > M in principle
more peaks can appear, however this would imply for the residue at the pole
α98 > 1/3, which is not allowed by the data.

We now consider the case d = 6. This case is special, since it corresponds to the
limiting dimension, where the theory is still renormalizable. In the limit d → 6
one notices that the propagator has a logarithmic singularity. This is because
the coupling constant becomes dimensionless and is running as a function of
the renormalization scale. In contrast to normal four-dimensional models, the
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running appears already at the tree level of the theory. Specializing to this case
and expanding the Γ-function around d = 6 the propagator can be written as:

DH H(q2) =

[

q2 + M2 + µ2
lhd log(

q2 + m2

µ2
lhd

)

]−1

. (17)

The spectrum contains a pole term for a positive mass as long as:

M2 + µ2
lhd log(m2/µ2

lhd) > 0. (18)

When this condition is not fulfilled the pole becomes a tachyon. The reason
is as before in the d = 5 case, that in this case the potential due to the
attractive H-exchange dominates over the repulsive λφ4 term and the vacuum
is not stable.

The corresponding Källén-Lehmann spectral density is:

ρ(s) = θ(m2 − s)
m2 − speak

m2 + µ2
lhd − speak

δ(s − speak)

+ θ(s − m2)
µ2

lhd

[ s − M2 − µ2
lhd log((s − m2)/µ2

lhd) ]2 + π2 µ4
lhd

. (19)

With these formulas we now try to describe the LEP data. We start with the
case d = 5. The delta-peak will be assumed to correspond to the peak at 98
GeV, with a fixed value of α98. Ultimately we will vary the location of the peak
between 95 GeV < mpeak < 101 GeV and 0.056 < α98 < 0.144. After fixing α98

and mpeak we have one free variable, which we take to be µlhd. If we also take a
fixed value for µlhd all parameters and thereby the spectral density is known.
We can then numerically integrate the spectral density over selected ranges
of s. The allowed range of µlhd is subsequently determined by the data at 115
GeV. Since the peak at 115 GeV is not very well constrained, we demand
here only that the integrated spectral density from sdown = (110 GeV)2 to
sup = (120 GeV)2 is larger than 30%. This condition, together with formula
(15), which implies:

ρ(s) <
(s − m2)1/2

π µ3
lhd

, (20)

leads to the important analytical result:

2

3π µ3
lhd

[ (sup − m2
peak)

3/2 − (sdown − m2
peak)

3/2 ] > 0.3 (21)

This implies µlhd < 53 GeV. Using the constraint from the strength of the
delta-peak, it follows that the continuum starts very close to the peak, the
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difference being less than 2.5 GeV. This allows for a natural explanation, why
the CL for the fit in the whole range from 100 GeV to 110 GeV is somewhat
less than what is expected by pure background. The enhancement can be due
to a slight, spread-out Higgs signal. Actually when fitting the data with the
above conditions, one finds for small values of µlhd, that the integrated spectral
density in the range 100 GeV to 110 GeV can become rather large, which
would lead to problems with the 95% CL limits in this range. We therefore
additionally demand that the integrated spectral density in this range is less
than 30%. There is no problem fitting the data with these conditions. As
allowed ranges we find:

95 GeV < m < 101 GeV

111 GeV < M < 121 GeV

26 GeV < µlhd < 49 GeV (22)

As a final consistency check we notice that the results are in agreement
with the upper limit on the Higgs boson mass from precision measurements
mH < 190 GeV. The integrated spectral density above 190 GeV is less than
1%. This upper limit on the Higgs mass is actually so large, because of the
measurement of the b-asymmetry, which is away from the other measure-
ments, that are very close together. One can follow the analysis from [8] with
the latest data and finds at the 95% CL mH < 124 GeV from the leptonic
data on sin2

θ(lept), mH < 144 GeV from mW and mH < 109 GeV from the two
combined. Even this limit is not inconsistent with our model, which may be
taken as additional confirmation. One can actually allow for the integrated
spectral density in the low mass region to be larger than given in our analysis,
if one allows for a fraction of invisible decays of the Higgs boson. Indeed if
this strong limit is valid, a low mass spread-out Higgs boson appears to be
the only possibility consistent with experiment.

We now repeat the analysis for the case d = 6. The analytic argument gives
the result:

sup − sdown

π2 µ2
lhd

> 0.3 (23)

which implies µlhd < 28 GeV. Because of this low value of µlhd it is difficult to
get enough spectral weight arond 115 GeV and one also tends to get too much
density below 110 GeV. So the fit was only possible in a restricted range. We
found the following limits:

95 GeV < m < 101 GeV

106 GeV < M < 111 GeV

22 GeV < µlhd < 27 GeV (24)
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As far as the limit from the precision data there is no problem here either.
The spectral weight above 190 GeV is a bit larger, because the six-dimensional
spectrum falls off somewhat more slowly at high values of s, however is still
less than 4%. Though not quite ruled out, the six-dimensional case therefore
seems to be somewhat disfavoured compared to the five-dimensional case.

From the discussion it is clear that the data can be well described by the as-
sumption of a higher dimensional Higgs field. The model is renormalizable and
contains only two parameters beyond the SM. The relevant mass scales are all
comparable to each other and no fine tuning is present. The model obviously
fits the data better than pure background or the MSSM, due to the fact that
fractional Higgses are possible at 98 GeV and 115 GeV. Also it provides an
explanation for the slight discrepancy in the range 100 GeV to 110 GeV, that
is not explained by another model. What is not clear is how significant the
overall results are. For this an analysis of the confidence level on a bin by bin
basis would be necessary. From the discussion given in [1] we cannot reliably
extract this significance. This can only be done by the experimental groups.
Assuming independence in the different mass ranges a very rough estimate
gives a 3.5 σ − 4 σ overall signal.

If this model is indeed true, what are the consequences for the Higgs search
at the LHC? The situation appears to be essentially hopeless. Most of the
spectral density is tied up in the low Higgs mass region. In this region the
Higgs search is performed at the LHC in the rare decay modes H → γγ and
H → ZZ∗ → l+l−l+l−, both of which heavily rely on an excellent mass reso-
lution in order to extract the Higgs signal. Since now there is no mass peak,
these signals do not work. In the range 150 GeV-180 GeV one can try to use
the dominant H → W ∗W ∗ decay mode. However this does not work either,
because the integrated spectral density in this region is less than 2% for the
d = 5 case and less than 6% for the d = 6 case. Also the golden decay modes
above the Z threshold are too small, since the integrated spectral density above
190 GeV is less than 4%. The only possibility to study this type of Higgs boson
appears to be the international linear collider (ILC), where the Higgs signal
can be studied independently of its decay modes. The spectral density can
be reconstructed from the Bjorken process e+e− → ZH , by looking at the
invariant mass of the Higgs boson, that can be extracted, if one knows the
Z momentum precisely. Since backgrounds and signal can be calculated and
measured very precisely, this model presents no particular problem for the ILC.
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