72 research outputs found

    Anomalous Roughening in Experiments of Interfaces in Hele-Shaw Flows with Strong Quenched Disorder

    Get PDF
    We report experimental evidences of anomalous kinetic roughening in the stable displacement of an oil-air interface in a Hele-Shaw cell with strong quenched disorder. The disorder consists on a random modulation of the gap spacing transverse to the growth direction (tracks). We have performed experiments varying average interface velocity and gap spacing, and measured the scaling exponents. We have obtained beta=0.50, beta*=0.25, alpha=1.0, alpha_l=0.5, and z=2. When there is no fluid injection, the interface is driven solely by capillary forces, and a higher value of beta around beta=0.65 is measured. The presence of multiscaling and the particular morphology of the interfaces, characterized by high slopes that follow a L\'evy distribution, confirms the existence of anomalous scaling. From a detailed study of the motion of the oil--air interface we show that the anomaly is a consequence of different local velocities over tracks plus the coupling in the motion between neighboring tracks. The anomaly disappears at high interface velocities, weak capillary forces, or when the disorder is not sufficiently persistent in the growth direction. We have also observed the absence of scaling when the disorder is very strong or when a regular modulation of the gap spacing is introduced.Comment: 14 pages, 17 figure

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    The appearance of broad Hαα in BL Lacertae

    No full text
    We present optical spectropolarimetry confirming Vermeulen et al.' recent discovery of a broad Ha emission line in BL Lacertae. This feature, which is present at about the same strength in spectra taken two days apart, is comparable in width (FWHM ≈ 4000 km s−1) and luminosity (LHα ∼ 1041 erg s−1) to the broad Hα lines of Seyfert type 1 galaxies. We also identify narrow lines of [N II] λ6583, [O I] λ6300 and [Fe VII] λ6087. The continuum polarization was at a relatively low level ( ≈ 5 per cent) with no significant wavelength dependence. We estimate that the possible depolarizing effect of the line emission is too small to be clearly detected in our data. Simultaneous photometry shows that the source was not in an unusually faint state, although its V magnitudes were close to the lower limit of its typical variability range. Frequent monitoring during one night revealed a very rapid decrease in brightness by ≈0.1 mag in 30 min. We tentatively conclude that the broad Hα feature must have increased in luminosity by a factor ∼ 4 since earlier spectroscopic observations. While the beamed synchrotron continuum associated with the radio source can account for the observed equivalent width, the fact that the line has not previously been detected suggests either a sudden injection of cold gas into the radiation field or the strengthening of an additional ionizing radiation source. We show that the Hα emission could be powered by thermal radiation from an accretion disc without significantly affecting the shape or polarization of the optical continuum. The presence of a broad emission line at the redshift of the host galaxy demonstrates that the prototype BL Lac object is not a microlensed high-redshift quasar
    corecore