5,759 research outputs found

    Depairing field, onset temperature and the nature of the transition in cuprates

    Full text link
    The depairing (upper critical) field Hc2H_{c2} in hole-doped cuprates has been inferred from magnetization curves MM-HH measured by torque magnetometry in fields HH up to 45 T. We discuss the implications of the results for the pair binding energy, the Nernst onset temperature, fluctuations and the nature of the Meissner transition at TcT_c.Comment: 4 pages, 5 figs., proc. M2S-HTSC-VIII, Dresden 2006, Physica (in press

    FPGA Implementation of a Parameterized Fourier Synthesizer

    No full text
    International audienceField-Programmable Gate Array (FPGA) offers advantages for many applications, particularly where missions are complex and time performance is critical. For small-production digital acoustic synthesizers, FPGA can achieve the above-mentioned tighter system requirements with low total system costs on single chip. In this manuscript, a real-time acoustic synthesizer is implemented using Fourier series algorithm on Altera's Cyclone II FPGA chip. This work emphasizes systematic designs and parallel computations. The proposed system includes a ïŹ‚exible processor and a parallel parameterized acoustic module. On one hand, the Nios II embedded processor, which is relatively low-speed component, is used to generate commands and conïŹgure high-speed acoustic module parameters. On the other hand, acoustic module which should require high-speed components contains 4 parallel architectures to gain high-speed simultaneous calculus of 4 independent digital timbres. Every timbre is equivalent to 16 parallel high-precision harmonic channels with 0.3 % frequency error. Experimental results corroborate the fact that a single FPGA chip can achieve complex missions and attain real-time performances

    The State-of-Art of Underwater Vehicles - Theories and Applications

    Get PDF
    An autonomous underwater vehicle (AUV) is an underwater system that contains its own power and is controlled by an onboard computer. Although many names are given to these vehicles, such as remotely operated vehicles (ROVs), unmanned underwater vehicles (UUVs), submersible devices, or remote controlled submarines, to name just a few, the fundamental task for these devices is fairly well defined: The vehicle is able to follow a predefined trajectory. AUVs offer many advantages for performing difficult tasks submerged in water. The main advantage of an AUV is that is does not need a human operator. Therefore it is less expensive than a human operated vehicle and is capable of doing operations that are too dangerous for a person. They operate in conditions and perform task that humans are not able to do efficiently, or at all (Smallwood & Whitcomb, 2004; Horgan & Toal, 2006; Caccia, 2006)

    Two-dimensional array of magnetic particles: The role of an interaction cutoff

    Full text link
    Based on theoretical results and simulations, in two-dimensional arrangements of a dense dipolar particle system, there are two relevant local dipole arrangements: (1) a ferromagnetic state with dipoles organized in a triangular lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square lattice. In order to accelerate simulation algorithms we search for the possibility of cutting off the interaction potential. Simulations on a dipolar two-line system lead to the observation that the ferromagnetic state is much more sensitive to the interaction cutoff RR than the corresponding anti-ferromagnetic state. For R≳8R \gtrsim 8 (measured in particle diameters) there is no substantial change in the energetical balance of the ferromagnetic and anti-ferromagnetic state and the ferromagnetic state slightly dominates over the anti-ferromagnetic state, while the situation is changed rapidly for lower interaction cutoff values, leading to the disappearance of the ferromagnetic ground state. We studied the effect of bending ferromagnetic and anti-ferromagnetic two-line systems and we observed that the cutoff has a major impact on the energetical balance of the ferromagnetic and anti-ferromagnetic state for Râ‰Č4R \lesssim 4. Based on our results we argue that R≈5R \approx 5 is a reasonable choice for dipole-dipole interaction cutoff in two-dimensional dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page
    • 

    corecore