Based on theoretical results and simulations, in two-dimensional arrangements
of a dense dipolar particle system, there are two relevant local dipole
arrangements: (1) a ferromagnetic state with dipoles organized in a triangular
lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square
lattice. In order to accelerate simulation algorithms we search for the
possibility of cutting off the interaction potential. Simulations on a dipolar
two-line system lead to the observation that the ferromagnetic state is much
more sensitive to the interaction cutoff R than the corresponding
anti-ferromagnetic state. For R≳8 (measured in particle diameters)
there is no substantial change in the energetical balance of the ferromagnetic
and anti-ferromagnetic state and the ferromagnetic state slightly dominates
over the anti-ferromagnetic state, while the situation is changed rapidly for
lower interaction cutoff values, leading to the disappearance of the
ferromagnetic ground state. We studied the effect of bending ferromagnetic and
anti-ferromagnetic two-line systems and we observed that the cutoff has a major
impact on the energetical balance of the ferromagnetic and anti-ferromagnetic
state for R≲4. Based on our results we argue that R≈5 is a
reasonable choice for dipole-dipole interaction cutoff in two-dimensional
dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page