991 research outputs found

    Resonant transmission through an open quantum dot

    Full text link
    We have measured the low-temperature transport properties of a quantum dot formed in a one-dimensional channel. In zero magnetic field this device shows quantized ballistic conductance plateaus with resonant tunneling peaks in each transition region between plateaus. Studies of this structure as a function of applied perpendicular magnetic field and source-drain bias indicate that resonant structure deriving from tightly bound states is split by Coulomb charging at zero magnetic field.Comment: To be published in Phys. Rev. B (1997). 8 LaTex pages with 5 figure

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review

    Heavy-Higgs Lifetime at Two Loops

    Get PDF
    The Standard-Model Higgs boson with mass MH>>2MZ M_H >> 2M_Z decays almost exclusively to pairs of WW and ZZ bosons. We calculate the dominant two-loop corrections of O(GF2MH4) O( G_F^2 M_H^4 ) to the partial widths of these decays. In the on-mass-shell renormalization scheme, the correction factor is found to be 1+14.6 1 + 14.6 % (M_H/TeV)^2 + 16.9 % (M_H/TeV)^4 , where the second term is the one-loop correction. We give full analytic results for all divergent two-loop Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to high precision using numerical techniques. We find agreement with a previous numerical analysis. The above correction factor is also in line with a recent lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g

    Molecular investigation of the ciliate Spirostomum semivirescens, with first transcriptome and new geographical records

    Get PDF
    Hunter N. Hines1,3*, Henning Onsbring2*, Thijs J. G. Ettema2 The ciliate Spirostomum semivirescens is a large freshwater protist densely packed with endosymbiotic algae and capable of building a protective coating from surrounding particles. The species has been rarely recorded and it lacks any molecular investigations. We obtained such data from S. semivirescens isolated in the UK and Sweden. Using single-cell RNA sequencing of isolates from both countries, the transcriptome of S. semivirescens was generated. Phylogenetic analysis of the rRNA gene cluster revealed both isolates to be identical. Additionally, rRNA sequence analysis of the green algal endosymbiont revealed that it is closely related to Chlorella vulgaris. Along with the molecular species identification, an analysis of the ciliates’ stop codons was carried out, which revealed a relationship where TGA stop codon frequency decreased with increasing gene expression levels. The observed codon bias suggests that S. semivirescens could be in an early stage of reassigning the TGA stop codon. Analysis of the transcriptome indicates that S. semivirescens potentially uses rhodoquinol-dependent fumarate reduction to respire in the oxygen-depleted habitats where it lives. The data also shows that despite large geographical distances (over 1,600 km) between the sampling sites investigated, a morphologically-identical species can share an exact molecular signature, suggesting that some ciliate species, even those over 1mm in size, could have a global biogeographical distribution

    Lepton-Flavor Violation via Right-Handed Neutrino Yukawa Couplings in Supersymmetric Standard Model

    Get PDF
    Various lepton-flavor violating (LFV) processes in the supersymmetric standard model with right-handed neutrino supermultiplets are investigated in detail. It is shown that large LFV rates are obtained when tanβ\tan \beta is large. In the case where the mixing matrix in the lepton sector has a similar structure as the Kobayashi-Maskawa matrix and the third-generation Yukawa coupling is as large as that of the top quark, the branching ratios can be as large as Br(μeγ)1011Br(\mu\rightarrow e\gamma)\simeq 10^{-11} and Br(τμγ)107Br(\tau\rightarrow\mu\gamma)\simeq 10^{-7}, which are within the reach of future experiments. If we assume a large mixing angle solution to the atmospheric neutrino problem, rate for the process τμγ\tau\rightarrow\mu\gamma becomes larger. We also discuss the difference between our case and the case of the minimal SU(5)SU(5) grand unified theory

    A Measurement of the Decay Asymmetry Parameters in \Xi_{c}^{0}\to \X^{-}\pi^{+}

    Full text link
    Using the CLEO II detector at the Cornell Electron Storage Ring we have measured the Ξc0\Xi_c^{0} decay asymmetry parameter in the decay Ξc0Ξπ+\Xi_c^{0} \to \Xi^{-} \pi^+. We find αΞc0αΞ=0.26±0.18(stat)0.04+0.05(syst)\alpha_{\Xi_c^{0}} \alpha_{\Xi} = 0.26 \pm 0.18{(stat)}^{+0.05}_{-0.04}{(syst)}, using the world average value of αΞ=0.456±0.014\alpha_{\Xi} = -0.456 \pm 0.014 we obtain αΞc0=0.56±0.39(stat)0.09+0.10(syst)\alpha_{\Xi_c^{0}} = -0.56 \pm 0.39{(stat)}^{+0.10}_{-0.09}{(syst)}. The physically allowed range of a decay asymmetry parameter is 1<α<+1-1<\alpha<+1. Our result prefers a negative value: αΞc0\alpha_{\Xi_c^{0}} is <0.1<0.1 at the 90% CL. The central value occupies the middle of the theoretically expected range but is not yet precise enough to choose between models.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Plasmids manipulate bacterial behaviour through translational regulatory crosstalk

    Get PDF
    Beyond their role in horizontal gene transfer, conjugative plasmids commonly encode homologues of bacterial regulators. Known plasmid regulator homologues have highly targeted effects upon the transcription of specific bacterial traits. Here, we characterise a plasmid translational regulator, RsmQ, capable of taking global regulatory control in Pseudomonas fluorescens and causing a behavioural switch from motile to sessile lifestyle. RsmQ acts as a global regulator, controlling the host proteome through direct interaction with host mRNAs and interference with the host’s translational regulatory network. This mRNA interference leads to large-scale proteomic changes in metabolic genes, key regulators, and genes involved in chemotaxis, thus controlling bacterial metabolism and motility. Moreover, comparative analyses found RsmQ to be encoded on a large number of divergent plasmids isolated from multiple bacterial host taxa, suggesting the widespread importance of RsmQ for manipulating bacterial behaviour across clinical, environmental, and agricultural niches. RsmQ is a widespread plasmid global translational regulator primarily evolved for host chromosomal control to manipulate bacterial behaviour and lifestyle

    Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Get PDF
    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4minutes in length), and a dynamic sense, computed using sliding windows (44s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.Highlights•Studied both static and dynamic connectivity changes in schizophrenia during rest•Small but significant connectivity differences might be obscured in static analysis.•Patients show significant differences in dwell times in multiple states.•Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manne
    corecore