38 research outputs found
Spectral fluctuation properties of spherical nuclei
The spectral fluctuation properties of spherical nuclei are considered by use
of NNSD statistic. With employing a generalized Brody distribution included
Poisson, GOE and GUE limits and also MLE technique, the chaoticity parameters
are estimated for sequences prepared by all the available empirical data. The
ML-based estimated values and also KLD measures propose a non regular dynamic.
Also, spherical odd-mass nuclei in the mass region, exhibit a slight deviation
to the GUE spectral statistics rather than the GOE.Comment: 10 pages, 2 figure
Electromagnetic transitions in neutron-rich Cl40
In-beam -rays from excited states of the neutron-rich (Tz=3) nucleus Cl40 have been identified in a threefold coincidence experiment in which rays and light charged particles were observed. The resulting decay scheme is presented, and implications for the structure of low-lying levels in Cl40 are discussed in light of recent data from charge-exchange and -decay work. The ordering of levels would seem to be quite different from the predictions of recent shell-model calculations
Yrast decays in K43
High-spin states in K43 were studied using the Be9(36S,pn)43K reaction. Threefold (p12) coincidence data and -ray intensity ratios were used to establish a decay scheme and identify negative- and positive-parity yrast decay chains. The 15/2- yrast state is relatively poorly aligned prior to decay. Energies of positive-parity levels predicted by Johnstone are in good agreement with experiment
Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements
Manifestations of P-,T-odd weak interaction between nucleons in nucleus are
considered. Renormalization of this interaction due to residual strong
interaction is studied. Mean squared matrix elements of P-,T-odd weak
interaction between compound states are calculated. Correlators between
P-,T-odd and P-odd, T-even weak interaction matrix elements between compound
states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure
Induced Parity Nonconserving Interaction and Enhancement of Two-Nucleon Parity Nonconserving Forces
Two-nucleon parity nonconserving (PNC) interaction induced by the
single-particle PNC weak potential and the two-nucleon residual strong
interaction is considered. An approximate analytical formula for this Induced
PNC Interaction (IPNCI) between proton and neutron is derived (), and the
interaction constant is estimated. As a result of coherent contributions from
the nucleons to the PNC potential, IPNCI is an order of magnitude stronger
() than the residual weak two-nucleon interaction and has a
different coordinate and isotopic structure (e.g., the strongest part of IPNCI
does not contribute to the PNC mean field). IPNCI plays an important role in
the formation of PNC effects, e.g., in neutron-nucleus reactions. In that case,
it is a technical way to take into account the contribution of the distant
(small) components of a compound state which dominates the result. The absence
of such enhancement () in the case of T- and P-odd interaction
completes the picture.Comment: Phys. Rev. C, to appear; 17 pages, revtex 3, no figure
Astrophysically important 19Ne states studied with the 2H(18F, α+15 O)n reaction
The nuclear structure of 19Ne near the proton threshold is of interest for understanding the rates of proton-induced reactions on 18F in novae. Analogues for several states in the mirror nucleus 19F have not yet been identified in 19Ne indicating the level structure of 19Ne in this region is incomplete. The 18F(d,n)19Ne and 18F(d, p)19F reactions have been measured simultaneously at Ec.m. = 14.9 MeV. The experiments were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL) by bombarding a 720-μg/cm2 CD2 target with a radioactive 18F beam. The 19Ne states of interest near the proton threshold decay by breakup into a and 15O particles. These decay products were detected in coincidence with position-sensitive E-ΔE silicon telescopes. The α and 15N particles from the break up of the mirror nucleus 19F were also measured with these detectors. Particle identification, coincidence, and Q-value requirements enable us to distinguish the reaction of interest from other reactions. The reconstruction of relative energy of the detected particles reveals the excited states of 19Ne and 19F which are populated. The neutron (proton) angular distributions for states in 19Ne (19F) were extracted using momentum conservation. The observed states in 19Ne and 19F will be presented
S-wave scattering lengths for the Be 7 +p system from an R-matrix analysis
The astrophysical S factor for the radiative proton capture reaction on Be7 (S17) at low energies is affected by the s-wave scattering lengths. We report the measurement of elastic and inelastic scattering cross sections for the Be7+p system in the center-of-mass energy range 0.474-2.740 MeV and center-of-mass angular range 70-150. A radioactive Be7 beam produced at Oak Ridge National Laboratory's (ORNL) Holifield Radioactive Ion Beam Facility was accelerated and bombarded a thin polypropylene (CH2)n target. Scattered ions were detected in the segmented Silicon Detector Array. Using an R-matrix analysis of ORNL and Louvain-la-Neuve cross-section data, the s-wave scattering lengths for channel spins 1 and 2 were determined to be 17.34-1.33+1.11 and -3.18-0.50+0.55 fm, respectively. The uncertainty in the s-wave scattering lengths reported in this work is smaller by a factor of 5-8 compared to the previous measurement, which may reduce the overall uncertainty in S17 at zero energy. The level structure of B8 is discussed based upon the results from this work. Evidence for the existence of 0+ and 2+ levels in B8 at 1.9 and 2.21 MeV, respectively, is observed
Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin
Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit
Meta-analysis of type 2 Diabetes in African Americans Consortium
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe