185 research outputs found

    A note on the moduli-induced gravitino problem

    Full text link
    The cosmological moduli problem has been recently reconsidered. Papers [1,2] show that even heavy moduli (m_\phi > 10^5 GeV) can be a problem for cosmology if a branching ratio of the modulus into gravitini is large. In this paper, we discuss the tachyonic decay of moduli into the Standard Model's degrees of freedom, e.g. Higgs particles, as a resolution to the moduli-induced gravitino problem. Rough estimates on model dependent parameters set a lower bound on the allowed moduli at around 10^8 ~ 10^9 GeV.Comment: 6 pages, references added, identical to the published versio

    Reheating the Universe After Multi-Field Inflation

    Full text link
    We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.Comment: 46+1 pages, 19 figure

    Endocrine disruptors and spontaneous premature labor: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Premature labor is a poorly understood condition. Estrogen is thought to play a key role and therefore the labor process may be affected by endocrine disruptors. We sought to determine whether or not an environmental toxicant, DDE, or dietary derived endocrine disruptors, daidzein and genistein, are associated with spontaneous preterm labor.</p> <p>Methods</p> <p>Cases were defined as primiparous patients having a preterm delivery at or before 35 weeks following the spontaneous onset of labor. Controls were defined as primiparous women who delivered on the same day as the cases but at term gestation.</p> <p>Over approximately 1 year, 26 cases and 52 controls were recruited. Subjects agreed to have blood tests on day one postpartum for DDE and for the phytoestrogens genistein and daidzein.</p> <p>Results</p> <p>The mean concentration of DDE was similar in the case and control groups: 4.29 vs 4.32 ng/g lipid p = .85. In the case group, 13/26 had detectable levels of daidzein (range 0.20 – 1.56 ng/ml) compared to 25/52 controls (range 0.21 – 3.26 ng/ml). The mean concentration of daidzein was similar in cases compared to controls: 0.30 vs .34 ng/ml p = 0.91. Of the case group,14/26 had detectable levels of genistein (range 0.20 – 2.19 ng/ml) compared to 32/52 controls (range 0.21 – 2.55 ng/ml). The mean concentration of genistein was similar in cases compared to controls: 0.39 vs 0.31 ng/ml, p = 0.61.</p> <p>Conclusion</p> <p>The serum levels of DDE in this population were found to be low.</p> <p>There appears to be no relationship between serum concentrations of DDE, daidzein, and genistein and spontaneous preterm labor in our population. The inability to identify an effect may be related to the comparatively low concentrations of DDE in our population and the rapid and variable reduction of phytoestrogens from women in labor.</p

    Recurrent dynamical symmetry breaking and restoration by Wilson lines at finite densities on a torus

    Full text link
    In this paper we derive the general expression of a one-loop effective potential of the nonintegrable phases of Wilson lines for an SU(N) gauge theory with a massless adjoint fermion defined on the spactime manifold R1,d−3×T2R^{1,d-3}\times T^2 at finite temperature and fermion density. The Phase structure of the vacuum is presented for the case with d=4d=4 and N=2 at zero temperature. It is found that gauge symmetry is broken and restored alternately as the fermion density increases, a feature not found in the Higgs mechanism. It is the manifestation of the quantum effects of the nonintegrable phases.Comment: 17 pages, 2 figure

    Variational and Geometric Structures of Discrete Dirac Mechanics

    Full text link
    In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew's triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange-Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.Comment: 26 pages; published online in Foundations of Computational Mathematics (2011

    Progression of conventional cardiovascular risk factors and vascular disease risk in individuals: insights from the PROG-IMT consortium

    Get PDF
    Aims: Averaged measurements, but not the progression based on multiple assessments of carotid intima-media thickness, (cIMT) are predictive of cardiovascular disease (CVD) events in individuals. Whether this is true for conventional risk factors is unclear. Methods and results: An individual participant meta-analysis was used to associate the annualised progression of systolic blood pressure, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with future cardiovascular disease risk in 13 prospective cohort studies of the PROG-IMT collaboration (n = 34,072). Follow-up data included information on a combined cardiovascular disease endpoint of myocardial infarction, stroke, or vascular death. In secondary analyses, annualised progression was replaced with average. Log hazard ratios per standard deviation difference were pooled across studies by a random effects meta-analysis. In primary analysis, the annualised progression of total cholesterol was marginally related to a higher cardiovascular disease risk (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.00 to 1.07). The annualised progression of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol was not associated with future cardiovascular disease risk. In secondary analysis, average systolic blood pressure (HR 1.20 95% CI 1.11 to 1.29) and low-density lipoprotein cholesterol (HR 1.09, 95% CI 1.02 to 1.16) were related to a greater, while high-density lipoprotein cholesterol (HR 0.92, 95% CI 0.88 to 0.97) was related to a lower risk of future cardiovascular disease events. Conclusion: Averaged measurements of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol displayed significant linear relationships with the risk of future cardiovascular disease events. However, there was no clear association between the annualised progression of these conventional risk factors in individuals with the risk of future clinical endpoints

    Automatic identification of variables in epidemiological datasets using logic regression

    Get PDF
    textabstractBackground: For an individual participant data (IPD) meta-analysis, multiple datasets must be transformed in a consistent format, e.g. using uniform variable names. When large numbers of datasets have to be processed, this can be a time-consuming and error-prone task. Automated or semi-automated identification of variables can help to reduce the workload and improve the data quality. For semi-automation high sensitivity in the recognition of matching variables is particularly important, because it allows creating software which for a target variable presents a choice of source variables, from which a user can choose the matching one, with only low risk of having missed a correct source variable. Methods: For each variable in a set of target variables, a number of simple rules were manually created. With logic regression, an optimal Boolean combination of these rules was searched for every target variable, using a random subset of a large database of epidemiological and clinical cohort data (construction subset). In a second subset of this database (validation subset), this optimal combination rules were validated. Results: In the construction sample, 41 target variables were allocated on average with a positive predictive value (PPV) of 34%, and a negative predictive value (NPV) of 95%. In the validation sample, PPV was 33%, whereas NPV remained at 94%. In the construction sample, PPV was 50% or less in 63% of all variables, in the validation sample in 71% of all variables. Conclusions: We demonstrated that the application of logic regression in a complex data management task in large epidemiological IPD meta-analyses is feasible. However, the performance of the algorithm is poor, which may require backup strategies
    • …
    corecore