
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Automatic identification of variables in epidemiological datasets
using logic regression

Citation for published version:
Abdi, NA, Scheckenback, F, Catapano, AL, Agewall, S, Ezhov, M, Bots, ML, Kiechl, S, Orth, A, McLachlan,
S & PROG-IMT study group 2017, 'Automatic identification of variables in epidemiological datasets using
logic regression' Bmc medical informatics and decision making. DOI: 10.1186/s12911-017-0429-1

Digital Object Identifier (DOI):
10.1186/s12911-017-0429-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Bmc medical informatics and decision making

Publisher Rights Statement:
© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons
Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/82961944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1186/s12911-017-0429-1
https://www.research.ed.ac.uk/portal/en/publications/automatic-identification-of-variables-in-epidemiological-datasets-using-logic-regression(41c854b4-3dc9-43ef-a24a-d31390daa82f).html


RESEARCH ARTICLE Open Access

Automatic identification of variables in
epidemiological datasets using logic
regression
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Alberico L. Catapano3,4, Stefan Agewall5,6, Marat Ezhov7, Michiel L. Bots8,9, Stefan Kiechl10, Andreas Orth2

on behalf of the PROG-IMT study group

Abstract

Background: For an individual participant data (IPD) meta-analysis, multiple datasets must be transformed in a
consistent format, e.g. using uniform variable names. When large numbers of datasets have to be processed, this
can be a time-consuming and error-prone task. Automated or semi-automated identification of variables can help
to reduce the workload and improve the data quality. For semi-automation high sensitivity in the recognition of
matching variables is particularly important, because it allows creating software which for a target variable presents
a choice of source variables, from which a user can choose the matching one, with only low risk of having missed
a correct source variable.

Methods: For each variable in a set of target variables, a number of simple rules were manually created. With logic
regression, an optimal Boolean combination of these rules was searched for every target variable, using a random
subset of a large database of epidemiological and clinical cohort data (construction subset). In a second subset of
this database (validation subset), this optimal combination rules were validated.

Results: In the construction sample, 41 target variables were allocated on average with a positive predictive value
(PPV) of 34%, and a negative predictive value (NPV) of 95%. In the validation sample, PPV was 33%, whereas NPV
remained at 94%. In the construction sample, PPV was 50% or less in 63% of all variables, in the validation sample
in 71% of all variables.

Conclusions: We demonstrated that the application of logic regression in a complex data management task in
large epidemiological IPD meta-analyses is feasible. However, the performance of the algorithm is poor, which may
require backup strategies.

Keywords: Meta-analysis, Data management, Logic regression, Epidemiology

Background
Today, many scientific insights are gained with meta-
analyses, rather than with single studies or trials, which is
illustrated with raising numbers of publications based on
meta-analyses. Individual participant data (IPD) meta-
analyses are far less frequent, but increasing steeply as
well. Depending on the scientific question, IPD meta-
analyses are superior to publication-based meta-analyses

in many aspects, including the possibility to choose uni-
form statistical models with uniform adjustment, and—if
the search is systematic—a better control of publication
bias [1]. Prospectively planned pooled analyses—however
optimal [1]—are still very rare, given the unproportional
higher organisational effort needed.
Of course, the conduct of an IPD meta-analysis is far

more laborious than a publication-based one. One large
part of the workload is the harmonization of the acquired
datasets. To facilitate the statistical analysis, all datasets
must be transformed in a consistent format, which
includes using uniform variable names and coding. In a
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large number of cohorts, that were planned and designed
independently, the retrospective harmonization of the
resulting data can become an immensely complex task
[2, 3]. Furthermore, manual serial harmonization of many
datasets is dull work that is prone to errors that have the po-
tential to compromise the integrity of the meta-analysis [4].
Automated identification of variables might help to reduce
the load of monotonous work, and therefore capacitates the
data manager to put maximal focus on data quality [4].
The PROG-IMT project (Individual progression of

carotid intima media thickness as a surrogate for vascu-
lar risk) is a large IPD meta-analysis project, with the
aim to assess whether the annual change of intima
media thickness (IMT, a high-resolution ultrasound
measure within the carotid artery wall) is a surrogate for
clinical endpoints, like myocardial infarction, stroke, or
death. The project works in three stages, where a large
number of datasets have been acquired, and their num-
ber is steadily growing. Details of the project plan have
been published in a rationale paper [5]. The acquired
datasets stem from large epidemiological population
studies, from hospital cohorts and from randomized
clinical trials (RCTs), each comprising between 200 and
2000 variables and between 100 and 15,000 participants.
They have in common that the same set of variables is
used for statistical analysis, including demographic data,
vascular risk factors, and IMT. When the current project
was started, we expected to acquire up to 250 individual
participant datasets in heterogeneous format and coding.
In order to design a computer program that helps to

reduce the workload of dataset harmonization, the first
step is to find criteria to assign the correct source vari-
able to a specific target variable in the created uniform
dataset (‘allocation’). This can be attempted with simple
rules, like < ‘cholesterol’ in ‘variable name’ indicates the
target variable ‘total cholesterol’>; or < a median value
greater than 94 indicates the target variable ‘systolic
blood pressure’>. To obtain reliable performance, several
of these rules have to be combined.
Logic regression is a relatively new statistical method

that enables to combine simple binary rules in complex
logic trees, and that provides methods to find optimal
Boolean combinations [6]. As yet, this method has mostly
been used in genetics [7–11] and oncology [12] to
optimize complex models for disease prediction; to the
best of our knowledge it hasn’t been applied to data
management problems. Aim of this study was to apply logic
regression techniques to the problem of assigning variables,
as explained above, and to validate the performance of this
approach, using data from the PROG-IMT project.

Methods
The PROG-IMT project is involved in using datasets
from population-based epidemiologic studies, from risk

populations and from RCTs. At the time these analyses
were started, 34 datasets were available that were already
manually harmonized. These were randomly (1:1)
assigned to a construction subset, or a validation subset
(Table 1). All these datasets include many variables; some
of those correspond to predefined target variables, which
are needed for the statistical analysis of the main project.
This set of target variables is shown in Table 2. The overall
algorithm followed is shown graphically in Fig. 1.
In a first step, a set of simple rules was manually

created (four to 41) for every target variable, by an
epidemiologist experienced in the handling of data of
this type. These rules are described in Additional file 1:
Table S1. These rules included conditions on the
variable name, the variable label, variable type (number,
date or string), scale level (ratio, ordinal or nominal,
dichotomous nominal); in nominal or ordinal variables
the number of values and the proportion of the most
frequent value; and in ratio variables the median and the
interquartile range.
For rules that involved a cutoff value (eg. median

greater than 44), this cutoff was optimized with ROC
analysis, with the aim to maximize the expression ‘sensi-
tivity + specificity’. For every target variable, logic regres-
sion models were created by Boolean combination of the
specific rules, or a subset of these. To find an optimal
Boolean combination of rules (example in Fig. 1), we
applied the ‘simulated annealing’ algorithm [4].
Simulated annealing is a generic optimization procedure

commonly used to optimize non-convex optimization
problems. It presupposes that an application specific score
or evaluation or loss function has been defined which
assigns a penalty to each state of a system. Simulated an-
nealing then iteratively perturbs the system using applica-
tions specific basic operations, in this case tree pruning
manipulations as mentioned below, with the aim of
reducing the score value of the perturbed state. The
perturbations are chosen in a random way with state tran-
sition probabilities changing in the course of the iteration.
This lowering of transition probabilities is the analogue of
lowering of temperature in random motion in physical
science and is the basic mechanism in simulated annealing
to reduce the danger of missing the global optima, while
at the same time allowing for convergence of the iteration.
In the current work transition probabilities were systemat-
ically reduced from 0.1 to 0.0001. When using simulated
annealing for logic regression in the context of identifying
source variable names, the states of the system are logical
expressions, like for example (R1 v R2) R3 that assign a
true or false value to candidate variable name based on
the rules R1, R2, R3. The evaluation function was a
weighted least squares function of the type SWSres = Σ wi

(yi – yi,pred)
2, which in the case of classification, where yi

and yi,pred are 0 or 1, is just a weighted misclassification
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Table 1 Datasets used for construction and validation

Acronym or designation Study name Study type Number of
variables

Number of
participants

Use

AIR Atherosclerosis and Insulin Resistance study general population 136 435 Construction

ARIC Atherosclerosis risk in communities general population 10108 15042 Validation

BCAPS Beta-blocker Cholesterol-lowering Asymptomatic
Plaque Study

RCT 134 1544 Validation

BHS Bogalusa Heart Study general population 1220 1986 Construction

BKRE Konyang University Hospital CIMT Registry RCT 109 205 Validation

Bruneck Bruneck Study general population 141 821 Validation

CAPS Carotid Atherosclerosis Progression Study general population 692 6972 Construction

CCCC Chin-Shan Community Cardiovascular Cohort Study general population 110 3603 Construction

CHS Cardiovascular Health Study general population 1426 5901 Construction

CIMT_TIME CIMT TIME Project risk population 144 671 Validation

CMCS-Beijing Chinese Multi-provincial Cohort Study-Beijing general population 141 1324 Construction

CREED Cardiovascular Risk Extended Evaluation in
Dialysis patients

risk population 53 138 Construction

DIWA Diabetes, Impaired glucose tolerance in Women
and Atherosclerosis

general population 129 644 Validation

EAS Edinburgh Artery Study general population 74 1593 Construction

Ekart et al. None risk population 102 54 Construction

EPICARDIAN EPIdemiología CARDIovascular en los ANcianos,
Cardiovascular Epidemiology in the Elderly in Spain

general population 76 446 Construction

EVA Etude du Vieillissement Arteriel general population 212 1135 Validation

HD-IMT Carotid ultrasonographic parameters as markers of
atherogenesis and mortality rate in patients on
hemodialysis

risk population 130 85 Validation

HOORN The Hoorn Study general population 128 3103 Construction

IMPROVE Carotid Intima Media Thickness and IMT-Progression
as Predictors of Vascular Events in a High Risk
European Population

risk population 103 3703 Construction

INVADE Interventionsprojekt zerebrovaskuläre Erkrankungen
und Demenz im Landkreis Ebersberg

general population 1581 3365 Validation

Kato et al. None risk population 131 284 Validation

KIHD Kuopio Ischemic Heart Disease Risk Factor Study general population 151 1399 Construction

Landecho et al. None risk population 69 248 Validation

Niguarda Niguarda-Monzino Study risk population 88 1564 Construction

NOMAS/INVEST Northern Manhattan Study general population 334 857 Validation

OSACA Osaca Follow-Up Study for Carotid Atherosclerosis risk population 108 291 Construction

Papagianni et al. None risk population 73 84 Construction

PIVUS Prospective Investigation of the Vasculature in
Uppsala Seniors

general population 98 1017 Validation

PLIC Progression of Lesions in the Intima of
the Carotid

general population 264 2607 Validation

RIAS Resistive Index in AtheroSclerosis risk population 67 158 Construction

Rotterdam Rotterdam Study general population 34 7983 Validation

SAPHIR Salzburg Atherosclerosis Prevention program
in subjects at High Individual Risk

general population 141 3127 Validation

SHIP Study of Health in Pomerania general population 320 4308 Construction
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count. In order to increase sensitivity without undue loss of
specificity, much higher weight was given to the positives
(0.9995, opposed to 0.0005 to the negatives), thus compen-
sating the much higher number of negatives, and the basic
operations are changes in the logical expression like “alter-
nating leaves”, “alternating operators”, “growing a branch”,
“pruning a branch”, “splitting a leaf” or “deleting a leaf”.
The names of these operations are better understood, when
visualizing a logical expression as a tree.
In order to understand the dependency of sensitivity

and specificity on the tuning parameters of the annealing
algorithm a factor analysis was performed. Two methods
were used, classification and logistic regression, four
different weights for the negatives, 5*10-4, 5*10-3, 5*10-2,
and 5*10-1, two tree sizes 5 and 10 and two values
namely 4 and 8 were used for the minimum number of
cases for which the tree needs to be 1. A 23 x 4 hybrid
factorial design was performed. This yielded 32 runs for
sensitivity and specificity and allowed finding interac-
tions between the factors.
An optimization with the aim of maximizing sensitivity

(low limit 99%) and specificity (low limit 75%) followed by

dynamic profiling gave the result that direct classifica-
tion is better than logistic regression and that due to
the high interaction between the weights and the
classification method, low weights are important to
achieve high sensitivity. The loss in specificity that
results from lowering the weights is less important
than the gain in sensitivity (Figs. 2 and 3).
To find optimal combinations of rules for every target

variable we used the training subset of datasets. Logic
regression was applied in several models, where different
configuration parameters, such as the weight of cases
(matching variables) and controls (non-matching
variables), and the link function itself (classification or
logistic model), were varied.
After optimal configuration parameters were found,

the stability of the method was tested using cross-
validation: each 10% of the data were predicted from
models derived from the remaining 90% of data in turn.
As it is a typical characteristic of logic regression that
different source data result in qualitatively very different
logic trees, these models couldn’t be compared on the
procedural level. Therefore we compared the resulting

Fig. 1 Fictitious example of a logic tree combining allocation rules

Fig. 2 Sensitivity and specificity as a function of tuning parameters, weights, treesize, minmass and method. At the set point weights = exp(-7),
treesize = 8, minmass = 10 for the classification method, the dependency of sensitivity and specificity upon these tuning parameters can be read
off this multiple one dimensional plot. On the x-axis in the left most plot, weights are shown as natural logarithm of the actual values that effectively
vary from 0.0005 = exp(-7.6) to 0.5 = exp(-0.7)
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model quality in terms of sensitivity and specificity to
detect a specific target variable.
The best model was fixed, and used to predict the

correct assignment of variables in the validation sample.
The resulting precision in the validation data was
assessed using sensitivity, specificity, positive and nega-
tive predictive values. In the context of the present
study, sensitivity of a target variable is the portion of
matching source variables that are correctly identified.
Positive predictive value (PPV) is the portion of identi-
fied source variables for which the identification is
correct. Correspondingly, specificity is the portion of
non-matching source variables that are identified as such
and negative predictive value (NPV) is the portion of
negatively identified source variables for which this iden-
tification is correct.
The source data were prepared with SAS version 9.3

(The SAS Institute, Cary, USA) and stored into a.csv file
format. For the data handling and logic regression we
wrote programs within C#, using R and R.NET libraries,
including those from the R software package developed
by Ingo Ruczinski, Charles Kooperberg, and Michael
LeBlanc at the Fred Hutchinson Cancer Research Center
in Seattle (CRAN package version 3). The design for the
optimization of tuning parameters and the optimization
were done with MODDE Pro version 11 (mks Data
Analytic Solutions, Umea, Sweden).

Results
As expected from a classification algorithm using a tree
based method the logic trees themselves were quite
different among different cross validation runs and due
to the character of the simulated annealing algorithm
even for repeated runs with the same input data.
However the measured sensitivity and specificity of
different runs of the algorithm were quite stable and

allowed for reliable comparisons. The complete best
models for every target variable are shown in Additional
file 1: Table S1. Table 2 shows the performance parame-
ters of these best models. In columns 3–6, the results in
the construction sample are displayed. Sensitivity was on
average reasonable high (0.80), as was the specificity
(0.70). The PPV was overall poor (on average 0.34), NPV
was good (average 0.95). In columns 7–10 we showed
the results of independent validation (in the validation
sample). Here, sensitivity was considerable less (0.62),
but specificity was comparable (0.71), just as PPV (0.33)
and NPV (0.94).

Discussion
The performance was quite heterogeneous: in some
target variables, sensitivity, specificity, PPV and NPV
were very high (e.g. age, antidiabetic medication). How-
ever, many other variables showed PPV that was far too
low to be useful even in the construction sample. For
the intended use within a computer program to support
the data manager, the performance of the models
seemed reasonable at the first glance, in terms of sensi-
tivity. However, in order to determine the correct source
variable for a given target variable, the most important
quality indicator is PPV, which is the portion of identi-
fied source variables for which the identification is
correct. When the PPV is considered, the performance
of the algorithm was much worse. In fact, the majority
of variable had PPV values of 50% or less (63% in the
construction sample, 71% in the validation sample).
With failure rates as high as observed in the validation
sample, a fictitious computer program would have to
give a list of several candidate variables rather than a
single result, for each target variable. Furthermore, an
escape pathway would have to be implemented for the
case that the true target variable was not on the list

Fig. 3 Sweetspot plot for sensitivity and specificity. The same information as in Fig. 2 as a two dimensional Contour Plot (Sweet Spot Plot) for
Specificity and Sensitivity. For low values of weights and high values of minmass, treesize = 8 and the classification method, sensitivity can be
raised above 99% without lowering specificity below 75%. On the x-axis, weights are again shown as natural logarithm of the actual values
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suggested by the program. However, even if the
algorithm can only give a ‘first guess’ which is correct in
50%, it may reduce the workload of the data manager by
nearly half.
Still, from a methodologic perspective, it is remarkable

that a tree based classification method based on a ran-
dom process such as the ‘simulated annealing’ behaves
in a reproducible fashion, on the result level, i.e. regard-
ing quality characteristics such as sensitivity and specifi-
city. The overall performance of the optimized logic
regression models in the validation sample, compared to
the construction sample, is quite similar to linear regres-
sion prediction models, for example. A finding that is
worth noticing is that our attempts to optimize for
sensitivity were counteracted by the models. For the
intended use, sensitivity is more important than specifi-
city, and PPV is more important than NPV, as a human
data manager has more difficulty reviewing many
variables than a short list of candidates, as long as he or
she can rely on the fact that the target variable is on this
short list. Therefore, we undertook efforts to optimize
the evaluation function of the algorithm for high sensi-
tivity and high PPV. In the construction sample this
worked nicely by weighting the positives by 0.9995
against 0.0005 for the negatives, i.e. a factor of 1999, for
the negatives. This improved sensitivity from 0.976
(0.995 against 0.005, i.e. 199) to 0.99948, while reducing
specificity from 0.87 to 0.78. Interestingly enough, as can
be verified in Table 2, the same models with the same
weighting turned out to be more specific than sensitive
in the validation sample.
As reflected by the increase of the number of meta-

analyses over time, many insights may be gained with
large collaborative projects collating data from many
participating cohorts in the future [13]. Although, from
the methodological point of view, the best form of meta-
analyses are most likely prospectively planned pooled
analyses [1, 13], such projects are still rare. This may be
due to the immense efforts and high volumes of funding
they require; furthermore such enterprises take many
years or even decades to complete. So in the near and
intermediate future, we will most likely increasingly face
the ‘second best option’ [1]: IPD meta-analyses that
require retrospective harmonization of data [14].. Whereas
some meta-analyses have developed impressively profes-
sional structures and algorithms [2–4] and the overall
quality of IPD meta-analyses has improved over the last
decade [15], there still remains scope for improving their
processes and statistical methods [14, 15].
To date, the aspects that are discussed in published

literature include mostly statistical modelling [15–19],
sometimes screening [15, 16], and rarely the process of
harmonization of data [2–4]. Fortier et al. [2] and
Doiron et al. [3] both describe detailed algorithms for

the harmonization of heterogeneous data including
manual allocation of target variables. Bosch-Capblanc
[4] suggested a computer program with a three-stage al-
gorithm to detect the matching source variable for each
given target variable. Compared to our algorithm, the
identification criteria are less refined, and it includes al-
ternative ways of allocating if the primary identification
criteria failed. To the best of our knowledge, no publica-
tion so far has refined the allocations procedures to the
extent we have. As the Bosch-Capblanc algorithm [4]
focused more on the actual handling of the data, a com-
bination of his algorithm with our allocation procedure
may yield excellent results, which remains to be tested.
However, the process shown here needs relevant

manual preparations before an automated or semi-
automated process can start, e.g. the manual definition
of target-variable rules. This preparatory work is de-
pending on the number of target variables, whereas the
work saved by automating depends on the number of
datasets processed. These benchmark data have to be
weighted carefully to decide whether this approach is
economic. Most likely, it will be economic when many
datasets are processed, and few target variables are
needed. If the rule definitions might be automated, too,
this might facilitate the application considerably, im-
prove reproducibility and reduce investigator bias.

Conclusions
With the current work we demonstrated that it is in
principle possible to use logic regression models with the
automated ‘simulated annealing’ algorithm for the task of
allocating variables in large datasets to specific target vari-
ables. With the performance shown in the present example,
however, it would be necessary to introduce precautions in
the design of a computer program, to avoid missing the
true matching source variable. Such precautions may in-
clude the program suggesting a list of candidate variables
rather than a single matching variable, and the option of an
exit path with manual allocation. In any case, the develop-
ment effort for algorithm, optimal models and a computer
program is very high, and may only amortize if several
hundred datasets have to be handled.

Additional file

Additional file 1: Table S1. Rules for specific target variables and their
best Boolean combination. Table S2. Program parameters. List of
Members of the PROG-IMT Study group. (DOC 744 kb)
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