102 research outputs found

    Modulation of Functional Activities of Chicken Heterophils by Recombinant Chicken IFN-γ

    Get PDF
    The objective of the present studies was to examine the in vitro effects of recombinant chicken interferon-γ (rChIFN-γ) on shape change, phagocytosis, and the oxidative/nonoxidative killing activities of day-old chicken heterophils. Heterophils (4 × 106/ml) were incubated with various concentrations of recombinant ChIFN-γ from both Escherichia coli and transfected Cos cells for 2 h at 39°C. The incubation of the neonatal heterophils with rChIFN-γ resulted in significantly greater numbers of cells with membrane shape change when compared with the mock-treated heterophils. Both Cos cell-derived and E. coli-derived ChIFN-γ significantly increased (p < 0.01) the phagocytosis of opsonized or nonopsonized Salmonella enteritidis by the neonatal heterophils in a concentration-dependent manner. Incubation with ChIFN-γ induced no direct stimulation of the respiratory burst by the chicken heterophils but did prime the heterophils for a significantly strengthened respiratory burst to subsequent stimulation with opsonized zymosan (OZ). Lastly, incubation of the heterophils with ChIFN-γ primed the cells for a significant increase in the release of β-D-glucuronidase following stimulation with OZ. These results show that neonatal avian heterophils can respond to cytokine modulation with enhanced functional competence, suggesting that ChIFN-γ can enhance the immune competence of the innate defenses of chickens during the first week of life

    Twin disc assessment of wear regime transitions and rolling contact fatigue in R400HT – E8 pairs

    Get PDF
    Twin disc tests were carried out to evaluate the wear resistance and Rolling Contact Fatigue (RCF) of premium R400HT rail samples in contact with E8 wheel samples. The wear rate and friction coefficient were correlated with the frictional work expended at the contact interface (the Tgamma approach). Accelerated RCF tests were also carried out on the premium R400HT rail and the results were compared to those obtained for standard R260 rail. The wear rates of rail samples were consistently lower than those reported in the literature for other contacting pairs in which the rail material studied is softer than R400HT. Also, the energy needed for the transition from the moderate to severe wear regime significantly increased for the hardened rail. Fatigue cracks were shallower for R400HT when compared with standard rail material. Hardened rails also showed lower mean spacing between fatigue cracks. This new information can be used to improve wear simulations of wheels and rails by using more realistic wear equations

    Evaluation of the coefficient of friction of rail in the field and laboratory using several devices

    Get PDF
    Accurate friction measurement is vital to apply appropriate friction management techniques to the wheel/rail interface. This work analyses different friction measurement techniques under a variety of conditions in the laboratory and the field. Tests have been carried out using a pendulum tester, hand-push tribometer, twin-disc machine and full-scale rig in the UK and Colombia for a variety of interfacial conditions and rail hardness. The pendulum has been found to be more sensitive to different conditions than the hand-push tribometer. This is due to the area that the pendulum sweeps being smaller, and so it can be more carefully controlled and therefore measure the surface condition being tested. This is in contrast to the push tribometer which needs a long section of rail to take a measurement. Twin-disc and full-scale rig creep curves show good agreement between each other

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    The balance of power: accretion and feedback in stellar mass black holes

    Full text link
    In this review we discuss the population of stellar-mass black holes in our galaxy and beyond, which are the extreme endpoints of massive star evolution. In particular we focus on how we can attempt to balance the available accretion energy with feedback to the environment via radiation, jets and winds, considering also possible contributions to the energy balance from black hole spin and advection. We review quantitatively the methods which are used to estimate these quantities, regardless of the details of the astrophysics close to the black hole. Once these methods have been outlined, we work through an outburst of a black hole X-ray binary system, estimating the flow of mass and energy through the different accretion rates and states. While we focus on feedback from stellar mass black holes in X-ray binary systems, we also consider the applicability of what we have learned to supermassive black holes in active galactic nuclei. As an important control sample we also review the coupling between accretion and feedback in neutron stars, and show that it is very similar to that observed in black holes, which strongly constrains how much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture Notes in Physics. Springer 201

    An Electrode Array for Limiting Blood Loss During Liver Resection: Optimization via Mathematical Modeling

    Get PDF
    Liver resection is the current standard treatment for patients with both primary and metastatic liver cancer. The principal causes of morbidity and mortality after liver resection are related to blood loss (typically between 0.5 and 1 L), especially in cases where transfusion is required. Blood transfusions have been correlated with decreased long-term survival, increased risk of perioperative mortality and complications. The goal of this study was to evaluate different designs of a radiofrequency (RF) electrode array for use during liver resection. The purpose of this electrode array is to coagulate a slice of tissue including large vessels before resecting along that plane, thereby significantly reducing blood loss. Finite Element Method models were created to evaluate monopolar and bipolar power application, needle and blade shaped electrodes, as well as different electrode distances. Electric current density, temperature distribution, and coagulation zone sizes were measured. The best performance was achieved with a design of blade shaped electrodes (5 × 0.1 mm cross section) spaced 1.5 cm apart. The electrodes have power applied in bipolar mode to two adjacent electrodes, then switched sequentially in short intervals between electrode pairs to rapidly heat the tissue slice. This device produces a ~1.5 cm wide coagulation zone, with temperatures over 97 ºC throughout the tissue slice within 3 min, and may facilitate coagulation of large vessels

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference

    Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns Findings From the Pregnancy and Childhood Epigenetics Consortium

    Get PDF
    Hypertensive disorders of pregnancy (HDP) are associated with low birth weight, shorter gestational age, and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms involved are poorly understood, but epigenetic regulation of gene expression may play a part. We performed meta-analyses in the Pregnancy and Childhood Epigenetics Consortium to test the association between either maternal HDP (10 cohorts; n=5242 [cases=476]) or preeclampsia (3 cohorts; n=2219 [cases=135]) and epigenome-wide DNA methylation in cord blood using the Illumina HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni correction, HDP and preeclampsia were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP was associated with higher methylation at 27 (63%) of the 43 sites, and across all 43 sites, the mean absolute difference in methylation was between 0.6% and 2.6%. Epigenome-wide associations of HDP with offspring DNA methylation were modestly consistent with the equivalent epigenome-wide associations of preeclampsia with offspring DNA methylation (R2=0.26). In longitudinal analyses conducted in 1 study (n=108 HDP cases; 550 controls), there were similar changes in DNA methylation in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes located at/near HDP-associated sites may be involved in developmental, embryogenesis, or neurological pathways. HDP is associated with offspring DNA methylation with potential relevance to development
    corecore