37 research outputs found

    The environmental context of the Neolithic monuments on the Brodgar Isthmus, Mainland, Orkney

    Get PDF
    This work was funded in part by Historic Environment Scotland.The World Heritage Sites of Orkney, Scotland contain iconic examples of Neolithic monumentality that have provided significant information about this period of British prehistory. However, currently, a complete understanding of the sites remains to be achieved. This is, in part, because the monuments lack an adequate context within the broader palaeolandscape. Recent investigations (seismic geophysical survey, microfossil analysis and 14C dating) in and around the Brodgar Isthmus, both onshore and offshore, are used to reconstruct the landscapes at a time when sea-level, climate and vegetation were different to that experienced today. Results show that in the early Neolithic the isthmus between the Ring of Brodgar and Stones of Stenness was broader with a smaller loch to the west. Furthermore this landscape contained sandstone outcrops that would have provided a potential source of stone for monument construction. Microfossil analysis and radiocarbon dates demonstrate that the Loch of Stenness was transformed from freshwater to brackish during the early Neolithic, perhaps immediately preceding construction of the major monuments. Finally, the analysis of our data suggests that sediment influx to the loch shows a tenfold increase coincident with widespread vegetation change that straddles the Mesolithic/Neolithic transition at c. 8 ka cal. B.P. These results provide, for the first time, a landscape context for the Neolithic sites on the isthmus.PostprintPeer reviewe

    Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009–2013): the Thames Initiative research platform

    Get PDF
    The River Thames and 15 of its major tributaries have been monitored at weekly intervals since March 2009. Monitored determinands include major nutrient fractions, anions, cations, metals, pH, alkalinity, and chlorophyll a and are linked to mean daily river flows at each site. This catchment-wide biogeochemical monitoring platform captures changes in the water quality of the Thames basin during a period of rapid change, related to increasing pressures (due to a rapidly growing human population, increasing water demand and climate change) and improvements in sewage treatment processes and agricultural practices. The platform provides the research community with a valuable data and modelling resource for furthering our understanding of pollution sources and dynamics, as well as interactions between water quality and aquatic ecology. Combining Thames Initiative data with previous (non-continuous) monitoring data sets from many common study sites, dating back to 1997, has shown that there have been major reductions in phosphorus concentrations at most sites, occurring at low river flow, and these are principally due to reduced loadings from sewage treatment works (STWs). This ongoing monitoring programme will provide the vital underpinning environmental data required to best manage this vital drinking water resource, which is key for the sustainability of the city of London and the wider UK economy. The Thames Initiative data set is freely available from the Centre for Ecology and Hydrology’s (CEH)Environmental Information Data Centre at https://doi.org/10.5285/e4c300b1-8bc3-4df2-b23a-e72e67eef2fd

    Nutrient and microbial water quality of the upper Ganga river, India: identification of pollution sources

    Get PDF
    The Ganga River is facing mounting environmental pressures due to rapidly increasing human population, urbanisation, industrialisation and agricultural intensification, resulting in worsening water quality, ecological status and impacts on human health. A combined inorganic chemical, algal and bacterial survey (using flow cytometry and 16S rRNA gene sequencing) along the upper and middle Ganga (from the Himalayan foothills to Kanpur) was conducted under pre-monsoon conditions. The upper Ganga had total phosphorus (TP) and total dissolved nitrogen concentrations of less than 100 μg l−1 and 1.0 mg l−1, but water quality declined at Kannauj (TP = 420 μg l−1) due to major nutrient pollution inputs from human-impacted tributaries (principally the Ramganga and Kali Rivers). The phosphorus and nitrogen loads in these two tributaries and the Yamuna were dominated by soluble reactive phosphorus and ammonium, with high bacterial loads and large numbers of taxa indicative of pathogen and faecal organisms, strongly suggesting sewage pollution sources. The high nutrient concentrations, low flows, warm water and high solar radiation resulted in major algal blooms in the Kali and Ramganga, which greatly impacted the Ganga. Microbial communities were dominated by members of the Phylum Proteobacteria, Bacteriodetes and Cyanobacteria, with communities showing a clear upstream to downstream transition in community composition. To improve the water quality of the middle Ganga, and decrease ecological and human health risks, future mitigation must reduce urban wastewater inputs in the urbanised tributaries of the Ramganga, Kali and Yamuna Rivers

    Hypervelocity impact fragmentation of basalt and shale projectiles

    Get PDF
    Results are presented for the fragmentation of projectiles in laboratory experiments. 1.5 mm cubes and spheres of basalt and shale were impacted onto water at normal incidence and speeds from 0.39 to 6.13 km s−1; corresponding to peak shock pressures 0.7–32 GPa. Projectile fragments were collected and measured (over 100,000 fragments in some impacts, at sizes down to 10 µm). Power laws were fitted to the cumulative fragment size distributions and the evolution of the exponent vs. impact speed and peak shock pressure found. The gradient of each of these power laws increased with increasing impact speed/peak shock pressure. The percentage of the projectiles recovered in the impacts was found and used to estimate projectile remnant survival in different solar system impact scenarios at the mean impact speed appropriate to that scenario. For Pluto, the Moon and in the asteroid belt approximately 55%, 40% and 15%, respectively, of an impactor could survive and be recovered at an impact site. Finally, the catastrophic disruption energy densities of basalt and shale were measured and found to be 24 × 104 J kg−1 and 9 × 104 J kg−1, respectively, a factor of ∼2.5 difference. These corresponded to peak shock pressures of 1 to 1.5 GPa (basalt), and 0.8 GPa (shale). This is for near normal-incidence impacts where tensile strength is dominant. For shallow angle impacts we suggest shear effects dominate, resulting in lower critical energy densities and peak shock pressures. We also determine a method to ascertain information about fragment sizes in solar system impact events using a known size of impactor. The results are used to predict projectile fragments sizes for the Veneneia and Rheasilvia crater forming impacts on Vesta, and similar impacts on Ceres
    corecore