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a b s t r a c t 

Results are presented for the fragmentation of projectiles in laboratory experiments. 1.5 mm cubes and 

spheres of basalt and shale were impacted onto water at normal incidence and speeds from 0.39 to 

6.13 km s −1 ; corresponding to peak shock pressures 0.7–32 GPa. Projectile fragments were collected and 

measured (over 10 0,0 0 0 fragments in some impacts, at sizes down to 10 µm). Power laws were fitted 

to the cumulative fragment size distributions and the evolution of the exponent vs. impact speed and 

peak shock pressure found. The gradient of each of these power laws increased with increasing im- 

pact speed/peak shock pressure. The percentage of the projectiles recovered in the impacts was found 

and used to estimate projectile remnant survival in different solar system impact scenarios at the mean 

impact speed appropriate to that scenario. For Pluto, the Moon and in the asteroid belt approximately 

55%, 40% and 15%, respectively, of an impactor could survive and be recovered at an impact site. Fi- 

nally, the catastrophic disruption energy densities of basalt and shale were measured and found to be 

24 ×10 4 J kg −1 and 9 ×10 4 J kg −1 , respectively, a factor of ∼2.5 difference. These corresponded to peak 

shock pressures of 1 to 1.5 GPa (basalt), and 0.8 GPa (shale). This is for near normal-incidence impacts 

where tensile strength is dominant. For shallow angle impacts we suggest shear effects dominate, result- 

ing in lower critical energy densities and peak shock pressures. We also determine a method to ascertain 

information about fragment sizes in solar system impact events using a known size of impactor. The re- 

sults are used to predict projectile fragments sizes for the Veneneia and Rheasilvia crater forming impacts 

on Vesta, and similar impacts on Ceres. 

© 2018 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Impacts in excess of a few km s −1 are deemed hypervelocity 

impacts, and have long been studied as a major evolution pro- 

cess for solar system bodies and surfaces. Here on Earth the mean 

impact speed is usually given as around 20 km s −1 ( Steel, 1998; 

Jeffers et al., 2001 ). However, the mean speed of impacts varies 

depending on their location within the Solar System. For exam- 

ple, the mean impact speed in the asteroid belt is approximately 

5 km s −1 ( Bottke et al., 1994 ), with the exact speed depending on 

the exact conditions, e.g. the mean impact speed on Vesta is es- 

timated as 4.75 km s −1 ( Reddy et al., 2012 ). Lower impact speeds 

(0.5–1 km s −1 ) are expected for Kuiper Belt objects in the outer 

Solar System ( Zahnle et al., 2003 ). However, if a body is a satellite 

of a planet, there will also be a contribution to the mean impact 

speed from the gravitational attraction of the larger nearby planet. 

Hence the satellites of Jupiter and Saturn will have mean impact 

speeds that increase the closer they are to the parent planet (e.g., 

∗ Corresponding author. 
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see Zahne et al., 2003; Burchell et al., 2005 ). There are even more 

specific, niche examples, of impacts, such as that of terrestrial 

material ejected after impacts on Earth, which then impacts the 

Moon. Such impacts have speed ranges which need to be found 

for that specific example (e.g., see Armstrong, 2010 , who gives the 

mode speed for terrestrial ejecta on the Moon as approximately 

2.8 km s −1 ). 

There has been significant research into impact cratering events 

and the resulting ejecta. A typical recent summary of impact re- 

lated research can be found in Osinski and Pierazzo (2013) and 

references therein. What is sometimes overlooked however is that 

projectile material itself may survive the impact (albeit in modified 

and/or heavily fragmented form). There has long been discussion 

of this, albeit less than that for other aspects of impacts. For ex- 

ample, early work by Gault and Heitowit (1963) looked to see how 

the kinetic energy of the projectile was partitioned during an im- 

pact, and estimated that the projectile internal energy (the waste 

heat) was 6% (of the projectile’s kinetic energy) for sand and be- 

tween 4% and 12% for basalt. Later, Gault and Wedekind (1978) dis- 

cussed projectile ricochet in shallow angle impacts in the labora- 

tory, as well as the energy density ( Q ∗p ) needed to fragment alu- 
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minium and basalt projectiles in an impact. Note that this con- 

cept of Q ∗p is similar to that of the critical energy density needed 

in an impact to disrupt a target ( Q ∗). Thus it is the energy den- 

sity (kinetic energy divided by mass) which, on average, results in 

the largest surviving fragment possessing half the original mass of 

the parent body (here the projectile). The presence of the subscript 

p indicates that the projectile alone is being considered, and thus 

Q ∗p = ½v 2 . This approach is extended in Schultz and Gault (1990a) , 

who considered in detail the break-up of projectiles in such im- 

pacts. In that work, Schultz and Gault reported firing aluminium 

and basalt spheres at targets of mostly steel, but with examples 

of water and aluminium targets as well. The impacts covered a 

speed range of 0.4 to 5.3 km s −1 , and were at very shallow angles 

of incidence (30 ° from the horizontal or less). Projectile disruption 

was reported, with significant fragments of the impactor recovered 

post-shot (over 50% in some cases). Where projectile ricochet was 

reported, in some cases the incident projectile was effectively in- 

tact after the impact. Studies of shallow angle ricochet have also 

been reported for basalt targets covered with sand ( Burchell et al., 

2010, 2015 ). As well as observing intact ricochet, they also reported 

very little reduction in outgoing speed compared to the incident 

speed. Separate studies have also considered projectile fragmen- 

tation during penetration of thin plates (e.g. Piekutowski, 1995 ). 

Schultz and Gault (1984) also considered how projectile fragmenta- 

tion can influence crater morphology. They showed that when the 

impact induced shock pressures exceeded the dynamic strength of 

the projectile, cratering efficiency was reduced. Since this occurs 

at modest impact speeds (less than a few km s −1 ), extrapolation 

of low speed data to higher speed examples in the Solar System 

may not be effective. 

Previous work in the laboratory which has observed projectile 

fragmentation also includes impacts into metal targets at speeds 

of up to 5 or 6 km s −1 (which can involve shock pressures of 

80 to over 100 GPa). Examples of this include Hernandez et al. 

(2006) for metal projectiles, and Burchell et al. (2008 ) for min- 

eralic impactors. Despite the extreme shocks, in the latter exam- 

ple, post-impact fragments of the mineral projectiles retained suf- 

ficient internal structure to have recognisable Raman spectra. Re- 

cently, studies of Raman spectra from olivine grains after impacts 

at speeds up to 6 km s −1 , do however show some subtle changes 

in peak positions. This suggests that some fine changes in structure 

may be occurring due to the shock during impact ( Foster et al., 

2013; Harriss and Burchell, 2016 ). 

In addition, Nagaoka et al. (2014) fired millimetre-sized pyro- 

phyllite and basalt projectiles onto regolith-like sand targets at ve- 

locities up to 960 m s −1 . They determined Q ∗p to be (4.5 ±1.1) ×10 4 

for pyrophyllite and (9.0 ±1.9) ×10 4 J kg −1 for basalt projectiles 

( Nagaoka et al., 2014 ). They also found that destruction of rock 

projectiles occurred when the peak pressure was approximately 

ten times the tensile strength of the rocks ( Nagaoka et al., 2014 ). 

Recently, Avdellidou et al. (2016) fired forsterite olivine and syn- 

thetic basalt projectiles onto low porosity ( < 10%) pure water–

ice targets at speeds between 0.38 and 3.50 km s −1 . From this, 

the estimated implanted mass on the target body was found to 

be a few percent of the initial projectile mass. Furthermore, they 

found an order of magnitude difference for Q ∗p , between the olivine 

( Q ∗p = 7.07 ×10 5 J kg −1 ) and basalt ( Q ∗p = 2.31 ×10 6 J kg −1 ). How- 

ever, they found that the two projectile materials had very similar 

fragment size frequency distributions ( Avdellidou et al., 2016 ). 

As well as laboratory experiments, there is extensive evidence 

for projectile survival in Solar System impact events. For exam- 

ple, projectile fragments have been recovered at 13 terrestrial im- 

pact sites including Barringer, Morokweng and Chicxulub craters 

(see Table 15.1, Goderis et al., 2013 , and references therein). Fur- 

thermore, analysis of Apollo era lunar samples shows that projec- 

tile fragments from impacts early in the Moon’s history can be 

found within the lunar regolith (e.g. Joy et al., 2012 , and refer- 

ences therein). Schultz and Crawford (2016) have suggested that 

the high meteoritic component found in samples returned from 

the Apollo 16 landing site may arise from ejecta from the impact 

which formed the Imbrium basin on the Moon. As well as pro- 

jectile material being mixed within the lunar regolith, Yue et al. 

(2013) used numerical models to show that for vertical impact ve- 

locities below 12 km s −1 , projectile material may survive the im- 

pact and be found in the central peak of the final crater. There 

are also suggestions by Reddy et al. (2012) that the dark material 

on Asteroid (4) Vesta could be of exogenic origin. This is based 

on the observation that the majority of spectra of the dark ma- 

terial are similar to carbonaceous chondrite meteorites, indicating 

mixing of such impactors with materials indigenous to Vesta. Re- 

lating to this observation, Daly and Schultz (2013, 2014, 2015a, 

2015b, 2016 ) have conducted hypervelocity impact experiments in 

order to explain the implantation of an impactor onto Vestan re- 

golith, and also the surface of Ceres. They fired basalt and alu- 

minium spherical projectiles, approximately 6.35 mm in diameter, 

onto pumice and highly porous ice targets at speeds between 4.5 

and 5.0 km s −1 . Surviving projectile fragments ranged from approx- 

imately < 105 µm to 5 mm. Based on their results, it was inferred 

that both Vesta and Ceres should have significant levels of exo- 

genic material delivered via impacts. 

In parallel to this, renewed interest in the distribution of or- 

ganic (and possibly even biological material) around the Solar Sys- 

tem as contents of small rocky bodies etc., has led to a steady 

increase in the number of laboratory studies into the survival 

of projectiles. For example, the survival of biomarkers in pro- 

jectile fragments in hypervelocity experiments has been studied 

(e.g., see Bowden et al., 2008; Parnell et al., 2010; Burchell et al., 

2014a ). Furthermore, even the survival of diatom fossils in projec- 

tile fragments has been demonstrated in laboratory experiments 

( Burchell et al., 2014b , 2017 ). This indicates that not only can pro- 

jectile fragments survive after impact, they can deliver a wide va- 

riety of materials to the target bodies. 

The subsurface regions at man-made impact sites should 

also contain impactor material. For example, consider the crater 

on comet 9P/Tempel-1 arising from the Deep Impact Mission 

( Schultz et al., 2013 ). This mission consisted of a 363 kg impactor 

(of which 49% was porous copper) impacting the comet nucleus at 

10.3 km s −1 ( A’ Hearn et al., 2005; Veverka et al., 2013 ). In labora- 

tory impacts onto ice targets at speeds up to 6.3 km s −1 , it has 

been shown that fragments of copper projectiles can survive at 

the impact site ( McDermott et al., 2016 ). Extrapolating to the Deep 

Impact case, McDermott et al. (2016) predict the survival of be- 

tween 8% and 15% of the copper projectile at the impact site. In 

that study, McDermott et al. (2016) also reported extensively on 

the progressive stages of disruption undergone by copper projec- 

tiles for impacts involving shock pressures up to 50 GPa, including 

providing size distributions of the fragments. Using high porosity 

targets, Avdellidou et al. (2017) , have shown that whilst, in gen- 

eral, projectile fragment survival increases with increasing target 

porosity, this is not the case when target mineral grain size ex- 

ceeds projectile size. 

Given the growing interest in emplacement of projectile ma- 

terial onto targets after impact we have conducted a series of 

impacts in the laboratory, recovering the projectile material after 

impact. Here we look at the fragmentation of basalt and shale 

projectiles in normal incidence impacts at speeds from 0.39 to 

6.13 km s −1 . The targets were water, a homogeneous target which 

is easily modelled and from which the projectile fragments can be 

readily recovered. We find Q ∗p and fragment size distributions, and 

compare to previous work. We also determine the possible sizes 
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for an impactor on Vesta using the cumulative fragment size dis- 

tribution. 

2. Method 

2.1. Projectiles 

The projectile materials used in this study were basalt and 

shale, mostly in the form of cubes, 1.5 mm along each edge, al- 

though in some shots basalt spheres (1.5 mm diameter) were also 

used. Basalt was used as a projectile type as it is often used as 

an analogue for chondrite meteorites (e.g. Daly and Schultz, 2016 ). 

Shale was chosen as a comparison material which has been used in 

previous impact studies (e.g. Parnell et al., 2010 ). The basalt cubes 

were cut from blocks collected from the Isle of Skye, Scotland, and 

were fine grained with small vesicles (mm sized). The composition 

of the basalt, as measured by SEM-EDX was: Olivine (Fa 80 Fo 20 ), 

Clinopyroxene (En 10 Fs 46 Wo 43 ) and Feldspar (An 57 Ab 32 Or 11 ). The 

shale was also collected from Scotland. In both cases, the projec- 

tiles were cut by hand, and measured and weighed before use. 

The basalt glass spheres used were acquired from ‘Whitehouse Sci- 

entific’ ( http://www.whitehousescientific.com/ ) and have a typical 

composition of SiO 2 (43%), Al 2 O 3 (14%), CaO (13%), Fe 2 O 3 (14%), 

MgO (8.5%), Na 2 O/K 2 O (3.5%) and others (4%). These spheres are 

the same as those used in Avdellidou et al. (2016) . 

2.2. The light-gas gun and the shot procedure 

The projectiles were shot using the University of Kent’s two 

stage light-gas gun ( Burchell et al., 1999 ). The speed was selected 

in each shot by varying the pre-pressure of the light gas used in 

the gun’s first stage. To achieve speeds below 1 km s −1 , the burst- 

ing disk, which separated the two stages in the gun, was calibrated 

to burst at specific pressures to ensure slow projectile speeds. The 

speed of the projectile was measured in-flight by passage through 

two laser screens with a known spatial separation, providing a 

speed determination to better than ±1% ( Burchell et al., 1999 ). 

When the gun was fired, the target chamber was evacuated to 

50 mbar to avoid deceleration of the projectile in flight. The shot 

regime used here was from 0.51 to 6.02 km s −1 for basalt, and 0.39 

to 6.13 km s −1 for shale (see Table 1 ). 

The target in each shot was a thin plastic bag of water held 

in a metal frame, see Fig. 1 a. The plastic was water rich and had 

a thickness of less than 50 µm, and in effect, acts as the surface 

layer of the water target in terms of the projectile impacts. There 

was approximately 250 ml of water in the target in each shot, 

and in the line-of-flight of the projectile there was a water col- 

umn depth of typically 3 cm. Previous experiments with this tar- 

get have shown that this is sufficient to contain the impact event 

without causing cratering in the rear surface of the target holder 

( Baldwin et al., 2007 ). During a shot the target holder stood in a 

metal tray with a metal cover over it ( Fig. 1 b). This design was 

to ensure maximum collection of the water after impact (a small 

aperture in the cover permitted entrance of the projectile). 

After a successful shot the target was removed from the cham- 

ber and the water collected. The collected water, containing the 

fragmented projectile, was then filtered through a 0.1 µm Durapore 

membrane filter using a vacuum pump. 

2.3. Fragment measuring 

After each shot, the resulting Durapore filter paper was mapped 

in the University of Kent’s Hitachi 3400-H Scanning Electron Mi- 

croscope (SEM). The SEM was run at 20 kV, with a magnification 

of x95 and in variable pressure mode (90–110 Pa) to avoid charg- 

ing as the samples were uncoated. The resulting map typically in- 

Fig. 1. (a) The ocean target frame in its base tray. The bag which contains the wa- 

ter is held between the two vertical plates whose separation can be adjusted. The 

impact direction is shown with the red arrow. (b) The cover which fits over the 

frame in (a). The projectile enters the cover in the hole seen in the face. The ruler 

is 30 cm long. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

cluded at least 800 individual fields of view. Each image was then 

analysed using ImageJ software. ImageJ is a public domain, Java 

based script, designed to help computer analysis of images, and 

was developed at the NIH ( https://imagej.nih.gov/ij/index.html , site 

accessed July 2017). This software draws an ellipse over the sil- 

houette of each fragment (see examples in Fig. 2 ) and produces 

the area and semi-major (a) and semi-minor (b) axis of each indi- 

vidual ellipse (fragment). This procedure was used by Durda et al. 

(2015) for example, to accurately measure the a and b values of the 

36 largest fragments from catastrophic disruption events of irreg- 

ular and regular targets. Fragment volumes are obtained assuming 

an ellipsoid shape with semi-major axis, a , and semi-minor axes 

b . Here we isolate and identify fragments down to around 10 µm 

in size, and can find over 10 0,0 0 0 fragments in the higher speed 

shots. To account for contamination from material which was not 

the projectile, i.e. any fine bursting disk or sabot material which 

may accompany the projectile in a shot, a control shot was con- 

ducted. This control involved firing the gun in the same way as 

usual, but into ice (instead of water) and without a projectile in 

the sabot. Ice was used because any small gun debris would not 

be able to pierce the bag, meaning it could not be collected. The 

melted ice was analysed as usual and the size distribution of the 

resulting fragments measured. An insignificant amount of material 

above 10 µm was measured. A small correction was then made to 

the size distribution in each true shot, but as the data presented 

here are typically for fragment sizes over 10 µm there is little ef- 

http://www.whitehousescientific.com/
https://imagej.nih.gov/ij/index.html
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Table 1 

Shot and projectile summary. The peak shock pressures were determined using the planar impact approximation (PIA, Melosh, 2013 ). To calculate pres- 

sure in the PIA, a linear wave speed relation of the form U = c + Su is used, where u and U are the particle speed and shock speed (both in km s −1 ), with 

separate values for C and S for projectile and target materials. For basalt and water values of C = 2.60 km s −1 , S = 1.62 and a density of 2860 kg m −3 , 

and C = 2.39 km s −1 , S = 1.33 and 997.9 km m −3 were used, respectively, ( Melosh, 2013 ). For shale we used C = 2.30 km s −1 , S = 1.61 and a density of 

2545 kg m −3 ( Ahrens and Johnson, 1995 ). Any blank entries for the mean fragment diameter are due to the projectile not fragmenting; in such cases 

the original projectile was recovered with minor damage. For the inclined angle shots the fragment distribution was not measured hence there are no 

values given for mean fragment diameter. The control shot had no projectile therefore has no mass and peak shock pressure. The error on the mean 

fragment diameter is the FWHM. 

Shot ID Projectile material Mass [mg] Speed [km s −1 ] Peak shock pressure (PIA) [GPa] Mean fragment diameter [µm] m L,p / M p 

S290715#1 Basalt 7.291 0.51 1.09 – 0.996 

S100615#1 Basalt 8.141 0.64 1.41 – 0.996 

S240615#1 Basalt 8.708 0.70 1.57 23.8 ±21.9 0.177 

S050815#1 Basalt 7.270 0.84 1.95 18.5 ±14.0 0.003 

S050315#1 Basalt 11.021 0.96 2.30 18.0 ±10.9 0.009 

G261115#1 Basalt 8.806 1.95 5.80 16.8 ±8.2 0.003 

G010515#2 Basalt 8.003 3.04 10.9 15.3 ±6.5 0.004 

G141015#1 Basalt 7.008 4.05 16.9 15.6 ±7.0 0.001 

G101215#1 Basalt 7.684 4.71 21.4 14.0 ±5.3 0.002 

G041115#1 Basalt 7.889 4.92 23.0 15.4 ±6.6 0.001 

G271114#1 Basalt 7.809 5.31 26.0 14.2 ±5.7 0.001 

G211015#2 Basalt 7.753 6.02 31.9 14.6 ±5.8 0.002 

G110516#1 Basalt a 5.143 1.98 5.93 18.0 ±10.7 0.011 

S270416#1 Basalt b 7.253 0.59 0.29 – 0.998 

S110316#1 Basalt b 7.494 0.98 0.50 – 0.234 

G200416#3 Basalt b 7.424 2.01 1.12 – 0.032 

S280116#1 Shale 7.518 0.39 0.74 – 0.998 

S030216#1 Shale 7.106 0.59 1.20 29.5 ±36.8 0.291 

S181115#1 Shale 7.136 0.95 2.12 22.7 ±27.5 0.413 

G130116#2 Shale 7.403 1.93 5.34 15.5 ±7.7 0.038 

G041115#1 Shale 6.465 3.12 10.3 15.5 ±7.2 0.013 

G031215#2 Shale 7.487 4.64 19.7 15.5 ±6.6 0.006 

G211015#2 Shale 8.083 6.13 30.9 16.0 ±7.6 0.002 

G250315#1 Control – 5.36 – 14.6 ±6.4 –

a Glass basalt sphere. 
b Basalt cube shot at 15 ° angle of impact. 

Fig. 2. SEM field of view for fragments at 0.70 km s −1 (left) and the ellipses fitted by the Image J software (right). 

fect on the results. As a check on the ImageJ process, one sample 

was measured directly by eye on the SEM to confirm the accuracy 

of the software method. Good correspondence was found in both 

total number and size distribution. 

2.4. Estimating the shock pressure 

The Planar Impact Approximation (PIA) was used to determine 

the peak shock pressure upon impact. This provides an estima- 

tion of maximum pressures computed from the Hugoniot equa- 

tions and the equations of state ( Melosh, 2013 ). The PIA is valid 

so long as the lateral dimensions of the projectile are small com- 

pared with the distance the shock has propagated. It requires a 

linear shock wave speed relation in the form U = C + Su, where U 

is the shock speed and u is the particle speed (both in km s −1 ). 

Separate values are required for C and S for both the projectile 

and target materials. From Melosh (2013) we take the values for 

basalt of C = 2.60 km s −1 , S = 1.62 and a density of 2860 kg m −3 , 

and C = 2.39 km s −1 , S = 1.33 and density of 997.9 kg m −3 for wa- 

ter. For shale we used C = 2.30 km s −1 , S = 1.61 and a density of 

2545 kg m −3 ( Ahrens and Johnson, 1995 ). Values for the peak 

shock pressure estimated using the PIA, for each shot are given in 

Table 2 . 

To compare to the peak shock pressure from the PIA we also 

used the ANSYS Autodyn 3D hydrocode to model the impacts (see 

Hayhurst and Clegg, 1997 ). This used both the projectile and target 

material equation of state (EOS) and a Von Mises strength model 

for the projectile. We used a shock EOS with the same values as 

that used in the PIA. The values used for the strength model for 

basalt were a shear modulus of 8.0 GPa ( Christensen et al., 1980 ) 

and yield stress of 200 MPa ( Rocchi et al., 2002 ). For shale we 

used a shear modulus of 1.6 GPa ( Fox et al., 2013 ) and yield stress 

of 62 MPa ( Koncagül and Santi, 1998 ). The shape of the projec- 

tile (cubic or spherical) was allowed for in the appropriate simula- 
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Table 2 

Comparison of peak shock pressures determined from the planar impact ap- 

proximation (PIA) (see Table 1 ) and the results from runs of Autodyn as de- 

scribed in the main text. For the Autodyn results, we give three results per 

simulation. The ‘Highest’ and ‘Lowest’ are the largest and smallest values for 

the pressure in the projectile. The highest value was typically close to the im- 

pact point, and the lowest is to the rear trailing portion of the projectile. The 

‘median’ value is that to which 50% of the projectile was subject. 

Speed [km s −1 ] Material PIA [GPa] AUTODYN-3D [GPa] 

Highest Median Lowest 

0.51 Basalt 1.09 2.14 0.44 0.05 

0.64 Basalt 1.41 2.71 0.60 0.05 

0.70 Basalt 1.57 3.00 0.68 0.06 

0.84 Basalt 1.95 3.63 0.85 0.07 

0.96 Basalt 2.30 4.20 1.05 0.07 

1.95 Basalt 5.80 8.96 3.07 0.23 

3.04 Basalt 10.9 14.6 6.07 0.84 

4.05 Basalt 16.9 20.2 9.79 1.34 

4.71 Basalt 21.4 24.0 12.1 1.79 

4.92 Basalt 23.0 31.0 12.6 1.66 

5.31 Basalt 26.0 30.5 13.9 2.07 

6.02 Basalt 31.9 48.3 21.5 3.50 

0.39 Shale 0.74 1.18 0.28 0.01 

0.59 Shale 1.20 1.87 0.47 0.02 

0.95 Shale 2.12 3.07 0.93 0.06 

1.93 Shale 5.34 6.66 2.78 0.36 

3.12 Shale 10.3 11.4 5.72 0.91 

4.64 Shale 19.7 33.2 9.88 1.73 

6.13 Shale 30.9 53.3 20.6 4.95 

tion. This allowed us to see the distribution of peak shock pressure 

throughout the bulk of the projectile and not just near the contact 

phase as in the case of the PIA. In particular, corners can be an 

issue for non-spherical impactors, so by using 3D simulations we 

try to take this explicitly into account. Peak pressures across the 

projectile calculated using Autodyn, are given in Table 2 . 

3. Results and discussion 

There were a total of 24 shots in this work (16 with basalt, 7 

with shale and 1 control). Table 1 summarises each shot and gives 

the mass of each projectile, the peak shock pressure, the mean 

fragment diameter and the ratio of the largest fragment mass to 

the projectile mass ( m L,p / M p ). Table 2 gives the shock pressures 

determined by the PIA and the Autodyn hydrocode simulation for 

each shot. In Autodyn, the peak shock pressures were determined 

at 250 points evenly spaced over the whole volume of the projec- 

tile. This allowed for the peak pressure not being a single value 

across the body, and permits reasonable identification of the both 

the maximum and minimum pressures in the projectile. In addi- 

tion, we also give in Table 2 the median peak shock pressure in 

the samples, which provides a more complete picture of the shock 

pressure inside the projectile. From Table 2 , it can be seen that 

the peak shock pressure calculated using the PIA lies between the 

maximum and median values found by Autodyn, and is typically 

some 50% of the maximum value at low speeds (0.5 km s −1 ), ris- 

ing to 75% at intermediate speeds (4 km s −1 ), and finally back to 

60% at 6 km s −1 . It is therefore a reasonable indicator of the peak 

shock in a finite volume of the sample (and not just at a single 

point), so we use it as the measure of shock pressure in the sub- 

sequent analysis. However, it should always be recalled that there 

are more lightly shocked regions in each impactor and that when 

cubes are used there can be particular effects in corner regions. 

Fig. 3 shows how the pressure measured by at two points (#234 

at the front and #9 at the back of the projectile) in the Autodyn 

simulation changed with time for the 6.02 km s −1 basalt impact. 

Position 234 was a computational cell in the leading half of the 

projectile and which was numerically eroded in the simulation, 

Fig. 3. Pressure readings for two positions in the Autodyn simulation, at the front 

(#234) and back face (#9) of a 1.5 mm cube shaped basalt projectile impacting 

water at 6.02 km s −1 . 

hence the sudden fall to zero GPa. Position 9 was positioned in the 

latter half of the projectile and therefore the shock wave reached it 

later. After the initial compression (increase in pressure) there was 

an expansion of the material (represented by a negative pressure). 

This pattern of behaviour repeated for approximately 6 µs. The dif- 

ference in peak shock pressure between the two points shows that 

material at the rear of the projectile received a considerably lesser 

shock than that at the front. Note that these positions did not 

record the highest or lowest peak shock pressures in the event. The 

positions which recorded the highest pressure (peak shock pres- 

sure) were positioned just behind the front impacting face, and the 

lowest were at the rear of the projectile. 

3.1. Morphology of projectile fragments 

Fig. 4 shows example SEM fields-of-view for three typical basalt 

shots (0.96, 3.04 and 5.31 km s −1 ). These show the average size 

of the fragments are getting smaller with increasing impact speed 

(sizes are given in Table 1 ). 

Fig. 5 shows the ratio of the semi-minor ( b ) to semi-major ( a ) 

for all fragments measured in typical shots, where a ratio of 1 

refers to a circle and 0.1 to a bar shape. At the lower speeds, both 

basalt and shale had a high mean value of b / a . However, for basalt 

this rapidly reduced to b / a ∼0.55 by speeds of 1 km s −1 and is 

then stable. For shale, the value of b / a of ∼0.55 is only reached 

for impact speeds of approximately 4.5 km s −1 and above. This 

suggests that initially when the projectile has been disrupted, the 

fragments appear to be more spherical on average, but with in- 

creasing impact speed/pressure they are more elliptical, and that 

this is material dependent. 

In Fig. 6 we show the mean value of each b / a plot and how 

it changes with impact speed (also see Table 3 ). When excluding 

the partially disrupted shots (shots < 1 km s −1 ), the averages are 

0.58 ±0.16 (basalt) and 0.59 ±0.14 (shale) as represented in Fig. 6 . 

Therefore both basalt and shale projectiles appear to have similar 

morphologies upon disruption, but shale requires a higher speed 

and a greater shock pressure to achieve this level of disruption. 

3.2. Cumulative fragment size distributions (CFSD) 

In Fig. 7 , we present some typical cumulative fragment size dis- 

tributions (normalised to the original projectile diameter) for six 

typical shots (3 basalt and 3 shale) at a range of speeds. Each 

cumulative fragment size distribution has been fitted with power 
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Fig. 4. Example SEM field of views of basalt fragments for impact speeds of 0.96, 3.04 and 5.31 km s −1 . Images are from backscattered electrons, in variable pressure mode 

(100 Pa), with accelerating voltage 20 kV. Some long thin fibres are present in the images and these are excluded from the analysis as they are not mineral in nature. 

Fig. 5. Histogram of the ratio of the semi-minor (b) to semi-major (a) for all fragments measured in these shots. A ratio of 1 implies a circle shape, and 0.1 a bar-like shape. 

Fig. 6. Mean b / a values for each shot. The two lines refer to the mean values for 

basalt (solid line) and shale (dotted line), excluding the slower speed shot data. 

laws in the form N( > S) = aS b , where N is the number of fragments 

greater than a given size S . A single power b did not fit the en- 

tire size range for any shot, so we have divided each size range 

into three. These refer to the large sized fragments, intermediate 

sized fragments and small sized fragments in each shot. The ap- 

proximate normalised size ranges are < 0.05, 0.05–0.1 and > 0.1 for 

small, intermediate and large respectively. The power b values for 

basalt and shale are given in Table 4 . 

In Fig. 8 we show how the power b changes with increasing 

impact speed. It would appear that for slower shots (partial frag- 

mentation domain) the gradient of the large fragments is shallower 

than the intermediate or small size ranges. This is because the 

large projectile fragments in these shots have not been broken up 

into multiple smaller similarly sized fragments. As speed increases 

above 1 km s −1 for basalt, there is a sudden large change in the 

slope for the large fragments from approximately −2 to approx- 

imately −5 or −6. This jump does not occur for shale until the 

speed exceeds approximately 3 km s −1 . This parallels the change 

in b / a ratios in the two materials vs. speed. 

Overall, each size section appears to get steeper (larger b ) with 

increasing impact speed. This is most evident in the larger frag- 
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Fig. 7. Cumulative fragment size distributions (normalised to the original projectile diameter) for six typical shots. The left plots are basalt and the right shale. The lines 

are fits in each size region (green for small sizes, blue for intermediate, and red at largest sizes). The slope of each fit line is given in Table 4 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

ments. This is explained by the increasing shock pressure breaking 

larger fragments into multiple similar sized fragments. Hence, at 

the highest impact speed (greatest shock pressure) there are fewer 

larger fragments. 

3.3. Survival/retained projectile percentage 

Assuming that each fragment’s mass is approximately equal to 

the mass of an ellipsoid calculated, as stated above, using the 

semi-major ( a, x i ) and minor ( b, y i ) axis, and knowing the den- 

sity ( ρ) of the material, we can deduce an approximation of the 

mass of each fragment. From this we can determine a percentage 

of projectile survival based on the recovered fragments: 

T otal Surv i v ed Mass = 

N 
∑ 

i =0 

4 

3 
ρπx i y 

2 
i . (1) 

This assumes the third axis, not seen in the 2D SEM images, is 

equal in size to the smaller of the two measured axes. 

In Fig. 9 the estimated surviving mass percentage against the 

peak shock pressure in each shot is shown. For basalt there is a 
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Table 3 

Summary of the mean ratio of the semi-major and semi-minor axes ( b / a ) 

values for basalt and shale cubes fired at each speed. The standard error 

on the mean is given in each case, along with σ , the standard deviation of 

the distribution about the mean. 

Impact speed [km s −1 ] Mean b / a Standard error ( ×10 −4 ) σ

Basalt 

0.51 1.00 – –

0.64 1.00 – –

0.70 0.69 6.45 0.12 

0.84 0.62 5.33 0.16 

0.96 0.58 2.53 0.16 

1.95 0.57 2.86 0.16 

3.04 0.57 2.60 0.16 

4.05 0.61 4.03 0.16 

4.71 0.56 2.83 0.16 

4.92 0.60 3.86 0.17 

5.31 0.57 2.88 0.16 

6.02 0.59 3.75 0.16 

Shale 

0.39 1.00 – –

0.59 0.77 10.0 0.09 

0.95 0.74 11.0 0.11 

1.93 0.59 3.28 0.16 

3.12 0.62 3.42 0.16 

4.64 0.56 2.50 0.16 

6.13 0.61 3.02 0.16 

good power law fit: 

Surv i v ing % = 115 P −0 . 49 , (2) 

where P is the peak shock pressure in GPa. The goodness of fit for 

this is r 2 = 0 . 9449 . 

The same power law fit for the shale data gives: 

Surv i v ing % = 100 P −0 . 33 . (3) 

The goodness of fit for the power law fit to shale is r 2 = 0 . 84 4 4 . 

Shale appears to have a higher surviving mass percentage at 

the higher shock pressure. We considered if this was an artefact 

of Eq. (1 ), whereby the third axis of each fragment (the depth) 

is not measured and is assumed to be equal to the semi-minor 

axis. However, upon further investigation of the fields-of-view the 

fragments of shale do not appear to be particularly flat (or ‘plate’ 

shaped) compared to the basalt. Looking at Fig. 7 , at a given im- 

pact speed the largest fragment of shale is larger than the largest 

fragment in the basalt shots. Given that most mass resides in the 

larger fragments, this may explain why shale gives more complete 

mass recovery than basalt in these impacts. Mass can be lost via 

two routes. The first is due to the mass present in fragments of a 

size below the experimental resolution. A second mechanism is re- 

moval of projectile fragments from the impact site mixed with tar- 

get material ejecta during the impact process. The mixing of pro- 

jectile material with target ejecta has been shown experimentally 

by, for example, Burchell et al. (2012) . 

4. Discussion 

4.1. Large fragments 

In Fig. 10 we display the behaviour of fragment size distribu- 

tions at the very largest sizes, which depend sharply on impact 

speed. At slower speeds the fragment size distributions have a 

concave shape. At intermediate speeds (approximately 3 km s −1 ) 

this flattens out. Finally, at higher speeds there is a convex shape. 

This behaviour is seen in the largest fragments of disrupted targets 

( Durda et al., 2007; Leliwa-Kopystynski et al., 2009 ) and is related 

to the object transitioning from a partially disrupted to a heavily 

catastrophically disrupted regime. As the energy density increases, 

the larger fragments (which appear in the slower speed impacts) 

are replaced by multiple smaller fragments. Thus the behaviour 

normally associated with disruption of targets, appears also to hold 

for fragmentation of projectiles. 

4.2. Survival estimates for impacts on the Moon, Mars, Asteroids and 

Pluto 

We use the fit ( Eq. (2) , Fig. 9 ) to deduce an estimation of 

the impactor survival percentage in different impact scenarios. In 

Table 4 

Summary of all fitting values for each power law and size section of the cumulative fragment size distributions (examples 

of which are shown in Fig. 7 ). The power law is in the form of N( > S) = aS b , where N is the number of fragments greater 

than a given size ratio S . Where no entries are given the projectile was recovered virtually intact. Also given is the square 

of the regression coefficient for each fit ( R 2 ). 

Speed [km s −1 ] Small Intermediate Large 

a ( ×10 −3 ) b R 2 a ( ×10 −3 ) b R 2 a ( ×10 −3 ) b R 2 

Basalt cube 

0.51 – – – – – – – – –

0.64 – – – – – – – – –

0.70 139.6 −2.64 0.9986 12.1 −3.54 0.9911 497.7 −1.66 0.9495 

0.84 62.8 −2.36 0.9964 31.4 −3.25 0.9960 582.4 −1.63 0.9880 

0.96 1623.6 −2.40 0.9972 24.0 −3.46 0.9982 0.2 −5.51 0.9845 

1.95 10.8 −3.49 0.9995 0.6 −4.24 0.9944 0.04 −5.17 0.9876 

3.04 36.2 −3.17 0.9948 0.4 −4.22 0.9992 0.3 −4.41 0.9833 

4.05 60.3 −2.91 0.9990 2.3 −3.68 0.9998 0.01 −5.28 0.9769 

4.71 21.0 −3.13 0.9940 0.1 −4.70 0.9979 0.01 −5.02 0.9370 

4.92 2.8 −3.62 0.9984 0.3 −4.18 0.9981 0.02 −5.06 0.9293 

5.31 3.8 −3.58 0.9990 1.3 −3.81 0.9969 0.001 −6.05 0.9923 

6.02 2.1 −3.69 0.9965 0.2 −4.19 0.9973 0.0 0 01 −6.88 0.9891 

Basalt sphere 

1.98 1900 −2.41 0.9791 16.7 −3.66 0.9966 0.14 −6.25 0.9351 

Shale 

0.39 – – – – – – – – –

0.59 14,165.2 −1.19 0.9893 114.0 −2.42 0.9987 1595.1 −1.17 0.9466 

0.95 1612.1 −1.72 0.9897 11.0 −2.94 0.9881 2772.8 −0.79 0.9216 

1.93 52.3 −3.00 0.9992 1.6 −3.83 0.9998 150.5 −2.26 0.9927 

3.12 269.2 −2.66 0.9973 1.7 −3.82 0.9990 73.5 −2.15 0.9317 

4.64 5.9 −3.63 0.9992 0.3 −4.33 0.9961 0.0 0 02 −7.63 0.8260 

6.13 11.2 −3.40 0.9984 0.4 −4.35 0.9987 0.001 −6.53 0.9250 
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Fig. 8. The gradients of the cumulative fragment size distribution (see Fig. 7 ) vs (a) impact speed and (b) by size regime for basalt, and similarly (c) and (d) are for shale. 

The fit lines in (a) are gradient = −0.144 x −2.72 , −0.138 x −3.48 and −0.628 x −2.63 for the small, medium and large fits respectively. In (c) the fits are gradient = −0.381 x −1.45 , 

−0.319 x −2.69 and −1.21 x −0.08 for the small, medium and large fits, respectively. 

Table 5 

Estimate of the percentage of impactor survival in different solar system impact scenarios. The peak shock pressure was determined using the 

PIA and the percentage survival was obtained from the equation shown on Fig. 10 . 

Body Speed [km s −1 ] Shock Pressure [GPa] Percentage Survival Reference for impact speed 

Pluto 1.9 4.6 54 Zahnle et al. (2003) 

The Moon 2.3 8.9 39 Burchell et al. (2014a) 

Mean collision Speed in the Asteroid Belt 5.0 48 17 Bottke et al. (1994) 

Mars 9.3 135 10 Steel (1998) 

Fig. 9. Projectile surviving mass at peak shock pressures determined using the PIA. 

The solid line is a fit to the basalt data. The solid and dashed line is the fit for the 

basalt and shale data, respectively. 

Table 5 we take the average impact speed on different solar sys- 

tem bodies, and, use the planar impact approximation to deter- 

mine a peak shock pressure for that impact. The impactors are 

taken as basalt, and the target bodies are either regolith (sand), 

water ice or basalt (for the Moon, Pluto and both Mars and Aster- 

oid belt, respectively). The appropriate C, S and density values for 

the target materials are 1.70 km s −1 , 1.31 and 1600 kg m −3 for re- 

golith (dry sand), 1.32 km s −1 , 1.53 and 915 kg m −3 for water ice, 

and 2.60 km s −1 , 1.62 and 2860 kg m −3 for basalt ( Melosh, 2013 ). 

Using the results for the PIA, combined with Eq. (2 ) we find an 

approximate surviving percentage of the projectile (see Table 5 ). 

When extrapolating to other bodies however, these surviving frac- 

tions should be considered upper limits. This is because other is- 

sues than fragmentation may influence retention at the impact site. 

For example, on small bodies, due to the low escape velocity more 

material may be lost as ejecta from a crater and not retained lo- 

cally. As already pointed out (see above), ejecta can carry impactor 

material mixed with it. 

These predicted values provide only a very rough guide owing 

to a lack of detailed knowledge relating to the effects of, for ex- 

ample, scaling to different projectile sizes, porosity in both pro- 

jectile and target, differing local gravity influencing retention of 

ejecta, the influence of surface curvature on the impact events, etc. 
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Fig. 10. Cumulative fragment size distribution (in log–log space) for the 10 largest 

fragments for (a) basalt and (b) shale at three typical impact speeds. At low speeds 

(right-most data set in each panel), the cumulative size distribution for the very 

largest fragments displays a concave behaviour (dotted line). At intermediate speeds 

this has flattened to a straight line and at the higher speeds (left-most data set in 

each panel) has become convex. 

However they do suggest that Pluto and the Moon should have 

large amounts of impactor remnants on their surface (or in the 

sub-surface beneath impact craters). Furthermore, although it is a 

slight extrapolation from the data, it does suggest that 17% of ma- 

terial in an asteroid impact should survive. Additionally, the results 

in Table 5 suggest that of order 10% of the impactor could survive 

an impact on Mars. This is however a major extrapolation beyond 

the shock pressure regime in which the data were taken here. The 

curve in Fig. 9 does not vary greatly with shock pressure at high 

pressures, however, this result should be taken as approximate. 

4.3. Onset of projectile disruption 

The projectile energy density is determined by the equation be- 

low ( Eq. (4) ) (see Schultz and Gault, 1990a; Nagaoka et al., 2014 ). 

Q p ( θ ) ≡
0 . 5 M p v i 

2 sin 2 θ

M p 
= 0 . 5 v i 

2 sin 2 θ , (4) 

where M p is the mass of the projectile, v i is the velocity of impact 

and ϴ is the angle of impact from the target surface (where for 

normal incident impacts this gives sin 2 θ = 1). It is assumed that 

energy lost in fragmentation greatly exceeds other internal energy 

losses such as deformation. The fragmentation limit, Q ∗p , is defined 

as the minimum specific energy required to disrupt the projectile 

so that the mass of the largest fragment equals 50% of the original 

projectiles’ mass ( m L /M p = 0.5). 

In Fig. 11 the data for m L /M p vs. Q p are shown for all impacts of 

the cube shaped projectiles at normal incidence. We fit one trend 

line to the shale data. By contrast the basalt appears to display 

two trend lines, as there are several distinct regions apparent in 

the data in this projectile energy density range. 

The equations of the lines are; for shale ( r 2 = 0 . 9278 ): 

m L 

m p 
= 1 . 05 × 10 5 Q 

−1 . 07 
p , (5) 

and for basalt where Q p < 10 6 J kg −1 ( r 2 = 0 . 9967 ): 

m L 

m p 
= 4 . 58 × 10 22 Q 

−4 . 27 
p , (6) 

and where Q p > 10 6 J kg −1 ( r 2 = 0 . 9852 ): 

m L 

m p 
= 2 . 50 Q 

−0 . 46 
p , (7) 

where Q p is in J kg 
−1 . From Eqs. (5) and ( 6 ) we deduce the 

catastrophic disruption energy densities to be 9 ×10 4 J kg −1 and 

24 ×10 4 J kg −1 , for shale and basalt respectively. This is a factor of 

∼2.5 difference between the two materials. 

Schultz and Gault (1990a) suggest that the energy partitioned 

into the projectile fragmentation, �E PF , can be split into the energy 

partitioned into fragmentation after impact, �E F , and the energy 

wasted in getting to the fragmentation limit, �E o Eq. (8) . 
(

�E PF 
m p 

)

= 

(

�E F 
m p 

)

+ 

(

�E o 

m p 

)

. (8) 

It was suggested by Schultz and Gault (1990a) that Eq. (8) can 

be rewritten by introducing the largest fragment mass, m L,p , and 

rearranging terms: 
(

m L 

m p 

)

= 

(

m L 

m p 

)

CD 

(

�E F 
�E PF 

)

+ 

(

m L 

m p 

)

PD 

(

�E o 

�E PF 

)

, (9a) 

= a 

(

�E F 
�E PF 

)

CD 

+ b 

(

�E o 

�E PF 

)

PD 

, (9b) 

where a and b represent fractions of the original projectile 

mass that define partial and catastrophic disruption, respectively, 

( Schultz and Gault, 1990a ). The first term can be shown to 

be equivalent to the projectile strength S (given by the tensile 

strength of the material), divided by the peak vertical stress σ θ , 

or, equivalently, when catastrophic disruption dominates failure: 

m L 

m p 
∼

(

σθ

S 

)−1 
∼

(

ρp Q 
S 

)−1 
∼

[ 

Q 

(

c t ρt 
c p ρp 

)

sin 2 θ
(

S 
ρ ˙ ε 1 / 4 

)−1 
] −1 

= [ Q c ( θ ) ] 
−1 

(10) 

where ˙ ǫ is the strain rate, c refers to speed of sound and ρ refers 

to the density. When partial disruption occurs, the second term in 

Eq. (9b ) dominates. It can be shown that: 

m L 

m p 
∼

[ 

Q sin 6 θ
(

S 

ρ
˙ ǫ1 / 4 

)] −1 

= [ Q o ( θ ) ] 
−1 

. (11) 

Combining these equations gives: 

m L 

m p 
= 

[

a 

Q c ( θ ) 
+ 

b 

Q o ( θ ) 

]

, (12) 

where Q c is the energy density when catastrophic disruption dom- 

inates failure, Q o is the energy density when partial disruption oc- 

curs and the values of a and b can be derived empirically. a and 

b are not derived for the data in this work. However, Schultz and 

Gault (1990a) do derive a and b for their data. 

In Fig. 12 we show results for m L / m p vs. Q p from four separate 

studies; Schultz and Gault (1990a), Nagaoka et al. (2014), Avdelli- 

dou et al. (2016) and the results for basalt projectiles in this paper. 
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Fig. 11. Mass ratio of largest surviving fragment of projectile versus the projectile energy density, Q p . The horizontal dotted line refers to the catastrophic disruption thresh- 

old, m L / m p = 0.5. The dashed and the solid lines are the fits to the shale and basalt, respectively. The fits were made in log–log space. 

All these studies used basalt projectiles. Here we also include the 

data for the basalt sphere and non-normal incident impact from 

Table 1 . As stated before, Schultz and Gault (1990a) fired basalt 

projectiles (diameter 5 mm) at inclination angles between 7.5 ° and 

15 ° into sand and one shot into water; Nagaoka et al. (2014) fired 

basalt cylinders (5 mm in diameter and 5 mm in length) into sand; 

and Avdellidou et al. (2016) fired synthetic basalt spheres (diame- 

ter 2.0–2.4 mm) into ice. 

The data in Fig. 12 a follows two trends – Trend 1 (basalt 

impacts at normal incidence from this work) and Trend 2 

(shots at non-normal incident, this work, and from Schultz and 

Gault (1990a) involving basalt onto sand at 7.5 °). Trend 1 has 

almost intact projectiles recovered after the impact, until Q 

∼10 5 J kg −1 . The surviving fraction then falls off rapidly between 

10 5 and 5 ×10 5 J kg −1 as disruption occurs. Above 5 ×10 5 J kg −1 , 

the projectile is fully disrupted and the gradient of the slope de- 

creases. 

The shots in Schultz and Gault (1990a) that were into sand 

were all fired at an angle of 7.5 °. This means that the projec- 

tile energy density is considerably lower than that in this work, 

i.e. Q p is lower due to the sin 2 θ term in Eq. (4 ). Schultz and 

Gault (1990a) show that the projectile usually fragments at a much 

lower Q p value than in our work at normal incidence; this is due 

to the shallow impact angle. The implication is that, although the 

non-normal incidence at a given impact speed should, according 

to Eq. (4 ), reduce the energy density in the projectile, it is actu- 

ally leading to disruption at a significantly lower Q p value. A plau- 

sible explanation, is that in shallow angle impacts, shear effects 

are important (i.e. so called “impact decapitation”, Schultz and 

Gault, 1990b ), unlike in more vertical impacts where it is the ten- 

sile strength that is critical. 

In Fig. 12 b we compare our work with that of Nagaoka et al. 

(2014) . The data could (mostly) be taken as from a single data set 

with the same trend vs. Q p , namely an initial step fall in m L / m p 

until Q p ∼ 10 6 J kg −1 (or m L / m p ∼0.01), and then a shallower 

dependence on Q p emerges. This suggests that there is no signifi- 

cant difference between impacts on sand (porosity 45%) and water. 

Target porosity is known to play a part in impact cratering pro- 

cess (see Love et al., 1993; Love and Ahrens, 1996 ), but it does 

not appear to have significantly influenced projectile disruption 

here. 

Finally, in Fig. 12 c we compare our results to those of 

Avdellidou et al. (2016) who used the same light gas gun facility as 

here, and similar sized projectiles of the same synthetic basalt, but 

fired onto solid ice target (porosity < 10%). Here the choice of tar- 

get has clearly influenced the outcome of the event. Catastrophic 

disruption on ice occurs at an increased Q p 
∗ (by a factor of 10). 

We shot a basalt sphere into our water target at a similar speed to 

Avdellidou et al. (2016) to see if the shape of the projectile was sig- 

nificant ( Avdellidou et al., 2016) used spheres rather than cubes as 

here). The result was closer to what we found from our other data 

with cube projectiles, rather than to that for the basalt spheres in 

Avdellidou et al. (2016) . It therefore appears projectile shape is not 

a significant issue. It should be noted however that the spheres are 

a synthetic, glassy, basalt. So there is some structural difference be- 

tween our cube shaped natural basalt projectiles and the synthetic 

spheres which may explain why the cube and spherical data in our 

work do not fully coincide – but this observation is based on one 

impact. 

Next, we calculate the peak shock pressure at the catastrophic 

disruption threshold Q ∗p , for Nagaoka et al. (2014), Avdellidou et al. 

(2016) and this work. In Table 6 we take the Q ∗p values for basalt 

of 24 ×10 4 J kg −1 , 9.00 ×10 4 J kg −1 and 2.31 ×10 6 J kg −1 from this 

work, Nagaoka et al. (2014) and Avdellidou et al. (2016) , respec- 

tively. From Eq. (4 ) we can deduce the associated impact veloci- 

ties to be, 693 m s −1 , 424 m s −1 and 2149 m s −1 . Using the PIA, 

with the appropriate target values for C and S, and density taken 

from Melosh (2013) , these impact speeds correspond to peak shock 

pressures of 1.55 GPa (our work), and 1.00 GPa (Nagaoka’s work). 

Avdellidou et al. (2016) have estimated the peak shock pressure in 

their impacts using Autodyn as 1.32 GPa at 2.14 km s −1 . We thus 

find that disruption occurs at 1.55, 1.00 and 1.32 GPa, very similar 

values in all three experiments on a variety of target types. The 

yield strength of basalt rocks is very variable and sample specific. 

However, the yield strength of basalt (at low strain rate) is approx- 

imately 250 MPa ( Schultz, 1993 ). Therefore the peak shock pres- 

sure at the catastrophic disruption threshold for these three works 

is approximately 4–5 times that of the compressive yield strength 
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Fig. 12. Mass ratio of largest surviving fragment of projectile versus the projectile energy density, Q p . For all the basalt impacts listed in Table 1 , compared to data from (a) 

Schultz and Gault (1990a) , (b) Nagaoka et al. (2014) and (c) Avdellidou et al. (2016) . The horizontal dotted line refers to the catastrophic disruption threshold, m L / m p = 0.5. 

All other lines are fits to the data. 
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Table 6 

Summary of the projectile energy density at catastrophic disruption and the corresponding impact speed for shale and 

basalt from this work, and basalt from Nagaoka et al. (2014) and Avdellidou et al. (2016) . 

Impactor Q p 
∗ [J kg −1 ] Impact speed at the 

Q p 
∗ value [m s −1 ] 

Peak shock pressure 

(PIA) [GPa] 

Reference 

Shale 9.42 ×10 4 434 0.84 This work 

Basalt 24 ×10 4 693 1.55 This work 

Basalt 9.00 ×10 4 424 1.00 Nagaoka et al. (2014) 

Basalt 2.31 ×10 6 2149 1.32 Avdellidou et al. (2016) 

(at low strain rates) of basalt. For shale however, we find the peak 

shock pressure at Q ∗p was 0.84 GPa, which is some 14 times the 

yield strength. 

4.4. Comparison to target fragmentation 

The results here for projectile fragmentation ( Table 6 ) can be 

compared to that for laboratory experiments concerning disruption 

of targets (see Ryan, 20 0 0 , for a review). For example, Takagi et al. 

(1984 ) disrupted targets of basalt at impact speeds from 70 to 

990 m s −1 . (i.e. low speed impacts). They found Q ∗ for basalt of 

473 J/kg, or 362 J/kg when they combine with other, similar data 

sets. These values are much less than those found here for projec- 

tile fragmentation. Holsapple et al. (2002 ) summarise a range of 

experimental laboratory results for target disruption, and for sili- 

cate targets again suggest a typical Q ∗ of a few hundred J kg −1 . 

However, these are cm scale targets, i.e. at a different scale to the 

projectiles used here. 

Recently, Durda et al. (2015) reported on impact experiments 

on cm scale basalt targets at speeds of 4–6 km s −1 . All their ex- 

periments were above the catastrophic disruption limit, with the 

largest surviving mass fragment ranging from 0.24 to 0.02 times 

the original target mass. Taking the least disruptive of these as set- 

ting an upper limit, we obtain Q ∗ < 2240 J kg −1 . A power law fit to 

their data suggests Q ∗ = 1321 J kg −1 , but this is based on only 6 

data points. This is greater than in the lower speed experiments, 

but still below what we find here for basalt projectiles. However, 

their target size is cm scale compared to mm scale for the projec- 

tiles here, and scale related strain effects change Q ∗ with size. For 

example Housen and Holsapple (1999 ) suggest that for granite, Q ∗

would increase by a factor of just over five for each decrease of an 

order of magnitude in size. This point is returned to below. 

Durda et al. (2015 ) also reported on target fragment shape. They 

found a mean b / a ratio of 0.72 ±0.13, greater than the value of 

0.58 ±0.16 we find here for basalt. They also reported on the cu- 

mulative mass distribution of target fragments, As usual, they find 

a power law behaviour, and give the power of −0.75 to −1.2 in the 

fragment mass range comparable to our intermediate size range. 

Since mass depends on size cubed, this is equivalent to a slope in 

size of −2.25 to −3.6, slightly smaller than what we find, which is 

−3.2 to −4.7. 

Michikami et al. (2016) , have also carried out impacts into (5–

15 cm sized) basalt targets at speeds of 1.6–7.1 km s −1 . They agree 

with the earlier results of Fujiwara et al. (1978 ), that b / a is roughly 

constant around 0.7. Michikami et al. (2016) also report on cumu- 

lative mass distributions. They find a power law behaviour, where 

the power increases with Q (i.e. with increasing fragmentation). 

For low mass fragments they find the power ranges from −0.4 to 

−1.1. The lower values of −0.4 correspond to Q values of a few 

hundred J kg −1 . For the higher Q values their results are similar 

to Durda et al. (2015 ). Although they make no attempts to scale 

their results with size, Michikami et al. (2016) note that the shape 

ratios they find are similar to those of m sized boulders on as- 

teroid 25143 Itokawa suggesting a catastrophic disruption origin 

for that body. This direct comparison of boulders (m scale) on 

Itokawa with the results of laboratory impact fragmentation exper- 

iments (cm scale) follows on from that of Nakamura et al. (2008 ) 

who also noted the similarities in shape. Michikami et al. (2018) , 

revisit target fragmentation, looking at fragments sizes ranging 

from < 120 µm to > 4 mm. At small to medium sizes, they find b / a 

is constant at around 0.7 independent of the degree of fragmenta- 

tion. They go on to note that b / a for Itokawa particles returned by 

the Hayabusa mission (see Tsuchiyama et al., 2014 ) have a mean of 

0.67, and suggest that they are fragments from an impacted target. 

In Tsuchiyama et al. (2014 ), the cumulative size distribution of the 

Itokawa particles was found to be −2.0. 

We can also compare to predictions from modelling. Benz and 

Asphaug (1999) model the disruption of basalt bodies at speeds 

of 3 km s −1 , and their results suggest that at the mm size scale 

here, Q ∗ should be approximately 2.3 ×10 4 J kg −1 . We note that at 

cm size scales, we have previously reported Q ∗ = 1447 ±90 J kg −1 

for cement targets in our gun ( Morris and Burchell, 2016 ), within 

a factor of 2–3 for similar targets reported elsewhere ( Davies and 

Ryan, 1990 ; Fujiwara et al., 1989 ). More generally, Holsapple et al. 

(2002 ) summarise a range of predictions for Q ∗ vs target body size 

for rocky targets. Extrapolating the predictions in Holsapple et al. 

(2002 ), to the mm size scale here, suggests a range of val- 

ues of Q ∗ from 5 ×10 3 – 5 ×10 4 J kg −1 . More recently, Leliwa- 

Kopysty ́nski et al. (2016) use an analytic model for disruption of 

rocky bodies which produces similar results. So there is a range 

for Q ∗ for target bodies in the literature, but the value found here 

for the shale projectiles is twice the upper value in this range, and 

that for basalt is some 5 times larger than the upper value in the 

modelling. 

4.5. Solar system implications 

From the results here we can, assuming no size effects, scale 

to impacts on real bodies in the Solar System. Caution is needed 

however, strength is well known to be size dependent. For exam- 

ple, in catastrophic disruption of bodies, the energy density re- 

quired to just disrupt a body, falls as body size increases. This is 

due to growth of cracks etc. being scale dependent, meaning that 

larger bodies are in effect weaker (see for example Holsapple et al., 

2002 ). Similarly there are particular strain dependent effects that 

show up at small sizes. This is illustrated for example by Price 

et al. (2010, 2012, 2013 ) where the strength of several materials is 

shown to be highly non-linear above strain rates of 10 5 s −1 , rising 

by over an order of magnitude as strain rates increase to 10 8 s −1 . 

This regime is entered when projectile or target bodies are very 

small (less than say 10 µm). Whilst these small sizes are not rel- 

evant here, it does illustrate the difficulties of extrapolating from 

one size scale to another. 

A full extrapolation of the results here to different size scales is 

thus difficult. No appropriate model is readily available which, at 

all size scales, produces for example size and shape distributions 

of fragments based on mineralogy of the impactors. We therefore 

follow the approach of Daly and Schultz (2015b, 2016 ), who at- 

tempt to identify key properties of laboratory scale experiments 

and compare to solar system scale examples. For example, if im- 

pactor fragments were identified, and the mean b / a ratio obtained 

for the fragments, a crude indication of impact speed can be ob- 
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Table 7 

Fragment size and percentage survived information regarding impacts onto Vesta and Ceres. On Vesta the Veneneia and Rheasilvia craters are considered along with similar 

impacts on Ceres. The peak shock pressure for each impact was determined using the planar impact approximation ( Melosh, 2013 ). By using the ratio of the diameter of 

projectile fragment to projectile from this work and the impactor size for Vesta or Ceres it is possible to determine the sizes of fragments. The percentage survival was 

determined using Eq. (2) . 

Impact speed 

[km s −1 ] 

Impact angle Size of 

impactor [km] 

Peak shock pressure 

(PIA) [GPa] 

Survival (%) Size of largest 

fragment [km] 

Size of typical mid 

size fragment [m] 

Modal size 

fragment [m] 

Vesta Scenarios 

Veneneia 2.00 45 50 8 43 8 1560 295 

Veneneia 4.75 45 30 26 24 3 865 180 

Rheasilvia 5.50 90 37 55 16 3 10 0 0 230 

Rheasilvia 5.50 45 90 32 21 8 2440 570 

Ceres Scenarios 

Veneneia 

Conditions 

2.00 45 50 6 48 7 1740 315 

Veneneia 

Conditions 

4.75 45 30 19 27 3 800 185 

Rheasilvia 

Conditions 

5.50 90 37 42 19 3 10 0 0 235 

Rheasilvia 

Conditions 

5.50 45 90 24 24 12 2370 550 

tained. That is to say, a high value of the mean b / a (0.6–0.7), would 

indicate a low speed ( < 1 km–s −1 ) impact had occurred, whereas 

a lower mean value ( ∼0.5–0.6) would suggest a higher speed im- 

pact. As already noted, it has been suggested by, amongst others, 

Durda et al. (2007) and Leliwa-Kopystynski et al. (2009) , that when 

the largest fragments are observed in an asteroid family, the im- 

pact event can be labelled catastrophic or super-catastrophic etc. 

by the convex or concave nature of the shape of the large frag- 

ments in the CFSD. Applying the same logic to projectile fragment 

size distribution can indicate limits on the likely impact speeds. 

The surface of the asteroid Vesta has dark material objects 

on the surface thought to be delivered via a carbonaceous chon- 

drite impact ( Reddy et al., 2012 ; Palomba et al., 2014 ; Daly and 

Schultz, 2016 ), as well as two large impact craters ( Schenk et al., 

2012 ). Reddy et al. (2012) states that the Veneneia crater, which is 

the second largest on the surface of Vesta, could have formed as 

the result of a 30 km diameter projectile impacting at 4.75 km s −1 , 

or a 50 km diameter projectile impacting at 2 km s −1 . The largest 

crater on Vesta, Rheasilvia, is postulated to have formed from 

either a 5.5 km s −1 impact of a 37 km impactor at 90 °, or far 

larger diameter sized projectile impacting at the more probable an- 

gle of 45 ° ( Ivanov and Melosh, 2013 ). Subsequently, Stickle et al. 

(2015 ) argued based on surface morphology, that the Rheasilvia 

impact feature was most likely the result of an impact at 5 km s −1 

and < 40 ° incidence. 

Using the data from this work it is possible to make some sim- 

ple predictions regarding the fraction of impactor surviving an im- 

pact, the size of the largest fragment, size of a typical fragment 

and the size of the modal fragment (see Table 7 ). Firstly we de- 

termine the peak shock pressure using the PIA and assuming an 

impact on Vesta from a carbonaceous chondrite is effectively a 

basalt-on-basalt impact. The assumption that basalt can approxi- 

mate carbonaceous chondrite is not strictly valid, the basalt being 

more competent and less porous. However, as noted by Daly and 

Schultz (2016) , both materials will fail in a brittle way, and the re- 

sulting fragment size distribution will be influenced by the critical 

flaw size in each. For these reasons basalt is used here as an ana- 

logue for the carbonaceous chondrite material thought to impact 

Vesta. We then match the predicted pressure to the CFSD genera- 

tion in this work at a similar peak pressure. Peak pressure is used 

rather than similar impact speed, as it is the shock pressures which 

are held to be critical for fragmentation. It is then possible to use 

Eq. (13 ) to determine fragment sizes on Vesta. 

d F V 
d iV 

= 
d F S 
d p 

, (13) 

where d is object diameter and the subscripts FV mean fragment 

on Vesta, iV the impactor (on Vesta), FS meaning fragment in the 

relevant shot, and p the projectile in the shot. Note that we have 

ignored any scaling issues and assumed that the same ratios will 

apply at both scales. It should be noted that this analysis assumes 

the projectile fragments do not co-mingle with target material 

forming new composite particles. 

One way to consider the scaling issue would be to consider the 

modelling of the variation of Q ∗ for target bodies in impacts (see 

Section 4.4 above). For example, Benz and Asphaug (1999) , model 

the disruption of basalt bodies at speeds of 3 km s −1 . Their model 

includes a strain rate dependent strength term. They report that 

the mass of the largest fragment in their models depends only on 

a simple linear function of the impact energy density normalised 

to Q ∗ and not on target size; this remarkable result holds even 

though the simulations span bodies ranging from cm to 100 km 

scales. There is however, a slight dependence on impact speed. As 

an example, if the same speed behaviour holds here, then as we 

go from 3 to 5 km s −1 , at a given value of Q (50% larger than Q ∗), 

we would find an increase in the largest fragment size according 

to Benz and Asphaug (1999) of about 10%. 

Therefore, finding the ratio for the largest, typical and modal 

projectile fragments, and multiplying by the impactor size, it is 

possible to determine impactor fragment sizes on Vesta. The same 

is done with impacts on Ceres. However due to Ceres’ lower den- 

sity and higher porosity the peak shock pressure is modelled as 

basalt impacting permafrost ice. The appropriate values needed for 

permafrost in the PIA are density = 1960 kg m −3 , C = 2.51 km s −1 

and s = 1.29 ( Melosh, 2013 ). The peak shock pressure can then be 

used in Eq. (2 ) to determine the amount of the projectile surviving 

at the impact site post impact. 

For Rheasilvia impact scenarios, in the cases of normal inci- 

dence impacts, the peak shock pressure exceed those in our ex- 

periments (max. of 31.9 GPa). We therefore use the CFSD from the 

impact at 31.9 GPa in the higher pressure scenarios, although this 

may introduce some inaccuracy. 

For a 50 km projectile impacting at 2 km s −1 to form the 

Veneneia crater we predict the largest fragment size to be 7.6 km 

in diameter. A typical and modal size would be 1.6 km and 295 m, 

respectively. Furthermore, 43% of the impactor could survive. For 

the other possible impact event to form Veneneia (i.e., a 30 km dia. 

impactor at 4.75 km s −1 ) we get modal, typical and largest frag- 

ment sizes of 185 m, 865 m and 2.9 km, respectively, and a survival 

percentage of 24%. For the same conditions for an impact on Ceres 

we find very similar fragment sizes (see Table 7 ). 
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Fig. 13. Log–log plot of predicted fragment size vs. the size of impactor for (a) 

Vesta and (b) Ceres. For Vesta, each impact was modelled as a basalt projectile im- 

pacting a basalt target at 45 ° incidence at the average impact speed on Vesta of 

4.75 km s −1 ( Reddy et al., 2012 ). For Ceres, it was a basalt projectile onto a per- 

mafrost target at 45 ° at 5 km s −1 (the mean collision speed in the asteroid belt, 

Bottke et al., 1994 ). The peak shock pressures were determined using the planar 

impact approximation ( Melosh, 2013 ). 

It is also possible to consider the fragment sizes from a range 

of impactor sizes on Vesta and Ceres. We assumed 45 ° incidence 

and mean impact speeds of 4.75 and 5.00 km s −1 , respectively. Pro- 

ceeding as previously, we find the model, typical and largest frag- 

ment size for impactors range in diameters from 1 to 100 km (see 

Fig. 13 ). 

5. Conclusion 

A body of laboratory work is now emerging on projectile frag- 

mentation in impacts to rival that concerning disruption of tar- 

gets. Here, basalt and shale projectiles, 1.5 mm 3 in size simu- 

lating meteorites, were fired onto water at speeds between 0.39 

and 6.13 km s −1 . The water with the target fragments was filtered 

through 0.1 µm filter membrane. These were then SEM mapped 

and the fragments were measured using ImageJ software. A con- 

trol shot was subtracted from the size distribution to account for 

any gun debris. Over 10 0,0 0 0 fragments were measured in most 

shots. 

The ratio of the semi-major, a , to the semi-minor, b , axis was 

determined. The shape of the average fragment at slower speeds 

appear to be more circular and becomes elliptical at speeds of 

1 km s −1 and 2 km s −1 onwards for basalt and shale respectively. 

The overall average b / a were 0.59 ±0.16 and 0.65 ±0.14 for basalt 

and shale, respectively. However, the average b / a values for fully 

disrupted targets, i.e. excluding the partially disrupted shots, were 

0.58 ±0.16 and 0.59 ±0.14 for basalt and shale, respectively. This 

suggests that at higher speeds the morphology of basalt and shale 

fragments are similar. These values are however lower than for tar- 

get fragments in the literature, from boulders on the surface of as- 

teroid 25143 Itokawa, and for samples returned from Itokawa. 

The cumulative fragment size distributions could not be fit by 

single power law functions. Instead three power laws were used 

in each distribution of the form N( > S) = aS b , where N is the num- 

ber of fragments greater than a given size S . The three S regimes 

were small, medium and large fragments when normalised to the 

original impactor size. With increasing impact speed, the gradient 

b of each size regime gets larger, i.e. steeper slopes. Furthermore, 

the behaviour of the largest fragments yields similar results to that 

of the fragments of catastrophically disrupted targets. That is the 

shapes of the size distributions for these largest fragments evolves 

rapidly, showing a transition from just disrupted to heavily catas- 

trophically disrupted projectiles. 

We have been able to determine the total mass survival from 

each shot; from this we can determine the mass survival percent- 

age. By fitting a power law to these results we can determine how 

much of an impactor could survive an impact on different solar 

system bodies. We estimate that for basalt projectiles at typical 

impact speeds, there could be approximately 55%, 40%, 15% and 

10% (all rounded to the nearest 5%) impactor survival at an impact 

site on respectively Pluto, the Moon, in the asteroid belt and Mars. 

Note that these are upper limits. Shale has a higher surviving mass 

percentage. 

We considered the mass of the largest fragment-to-projectile 

mass ratio against the projectile energy density. For basalt we find 

two trends in the data, at low and high Q values, whereas for 

shale we find only one trend. We calculated the catastrophic dis- 

ruption energy densities of basalt and shale of 24 ×10 4 J kg −1 and 

9 ×10 4 J kg −1 , respectively. These results have been compared to 

other studies of projectile fragmentation in the literature. In gen- 

eral, we find the values can vary greatly depending on the tar- 

get type and impact speed. However, we find they correspond to 

similar peak impact shock pressures (1–1.5 GPa). This is despite a 

range of different target types and impact speeds being used in 

the various experiments. The peak shock pressures in basalt at 

the catastrophic disruption limit, were some 4–5 times the yield 

strength of basalt at low strain rates. There is difference in the Q ∗

value found for basalt when compared to the data of Schultz and 

Gault (1990a) , even when allowing for the differing shock pres- 

sures in the various experiments. We attribute this to the shallow 

angle of incidence in their work (typically less than 15 °) compared 

to the normal incidence impacts here. At small angles it is not just 

the tensile strength that plays the major role in projectile break- 

up, with shear strength becoming important (see also Stickle and 

Schultz, 2011 , for other examples of shear strength effects in shal- 

low angle impacts). 

We also compared our results to those for target fragmentation. 

Even when adjusting for size, we appear to have a larger Q ∗ value 

for projectile fragmentation than is reported for targets. The slope 

of the fragment cumulative size distribution appears steeper than 

for target fragmentation, and fragment shape also appears to differ 

with a lower b / a ratio. 

Finally we apply a simple model based on peak shock pressure 

to determining information about the fate of possible impactors in 

many solar system impact events, with specific examples for im- 

pacts on Vesta and Ceres where we predict the fragment sizes for 

a wide range of impactor sizes. For the specific cases of Veneneia 
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and Rheasilvia craters on Vesta we find 15–25% of the impactor can 

survive if the impact was at the mean impact speed predicted for 

Vesta (around 5 km s −1 ). This compares well with the prediction 

of 17% of Daly and Schultz (2016) . For Ceres we find impactor re- 

tention in the typical range of 20 – 30%, somewhat higher than 

Daly and Schultz (2015b) where they consider basalt impacting 

porous snow. 
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