118 research outputs found

    Celestial mechanics of elastic bodies

    Get PDF
    We construct time independent configurations of two gravitating elastic bodies. These configurations either correspond to the two bodies moving in a circular orbit around their center of mass or strictly static configurations.Comment: 16 pages, 2 figures, several typos removed, erratum appeared in MathZ.263:233,200

    Pressure-induced metal-insulator transition in MgV_2O_4

    Full text link
    On the basis of experimental thermoelectric power results and ab initio calculations, we propose that a metal-insulator transition takes place at high pressure (approximately 6 GPa) in MgV_2O_4.Comment: 2 pages, 3 figures, accepted in Physica B (Strongly Correlated Electron Systems '07

    First- principle calculations of magnetic interactions in correlated systems

    Full text link
    We present a novel approach to calculate the effective exchange interaction parameters based on the realistic electronic structure of correlated magnetic crystals in local approach with the frequency dependent self energy. The analog of ``local force theorem'' in the density functional theory is proven for highly correlated systems. The expressions for effective exchange parameters, Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The first-principle calculations of magnetic excitation spectrum for ferromagnetic iron, with the local correlation effects from the numerically exact QMC-scheme is presented.Comment: 17 pages, 3 Postscript figure

    ARPES Spectra of the Hubbard model

    Full text link
    We discuss spectra calculated for the 2D Hubbard model in the intermediate coupling regime with the dynamical cluster approximation, which is a non-perturbative approach. We find a crossover from a normal Fermi liquid with a Fermi surface closed around the Brillouin zone center at large doping to a non-Fermi liquid for small doping. The crossover is signalled by a splitting of the Fermi surface around the XX point of the 2D Brillouin zone, which eventually leads to a hole-like Fermi surface closed around the point M. The topology of the Fermi surface at low doping indicates a violation of Luttinger's theorem. We discuss different ways of presenting the spectral data to extract information about the Fermi surface. A comparison to recent experiments will be presented.Comment: 8 pages, 7 color figures, uses RevTeX

    Study of the pressure effects in TiOCl by ab initio calculations

    Full text link
    Electronic structure calculations on the low dimensional spin-1/2 compound TiOCl were performed at several pressures in the orthorhombic phase, finding that the structure is quasi-one-dimensional. The Ti3+ (d1) ions have one t2g orbital occupied (dyz) with a large hopping integral along the b direction of the crystal. The most important magnetic coupling is Ti-Ti along the b axis. The transition temperature (Tc) has a linear evolution with pressure, and at about 10 GPa this Tc is close to room temperature, leading to a room temperature spin-Peierls insulator-insulator transition, with an important reduction of the charge gap in agreement with the experiment. On the high-pressure monoclinic phase, TiOCl presents two possible dimerized structures, with a long or short dimerization. Long dimerized state occurs above 15 GPa, and below this pressure the short dimerized structure is the more stable phase.Comment: 3 pages, 3 embedded figures, 1 table. A. Pi\~neiro, et al.,J. Magn. Magn. Mater. (2009) (accepted

    A Comparison of Personality, Life Events, Comorbidity, and Health in Monozygotic Twins Discordant for Anorexia Nervosa

    Get PDF
    Genetic and environmental factors contribute to the etiology of anorexia nervosa (AN). The co-twin control design is one of the most powerful methods available to evaluate environmental factors that could contribute to differences between monozygotic (MZ) twins who are discordant for AN. Using available data from a unique and rare sample of 22 Swedish female MZ pairs discordant for AN, we compared personality, life events, comorbidity, and health factors. Twins with AN had significantly higher perfectionism scores than unaffected co-twins and reported younger ages at first diet than unaffected co-twins who had dieted. Consistent with previous literature, more twins with AN reported gastrointestinal problems than unaffected co-twins. Although not significant due to low statistical power, more unaffected co-twins reported experiencing emotional neglect than twins with AN. Early dieting may be a harbinger of the development of AN or an early symptom. Higher perfectionism may represent a risk factor, sequela, or both. Sibling perception of neglect is noteworthy given the impact of an ill child with AN on family function and wellbeing. The health and wellbeing of siblings should be addressed clinically when one child in the family suffers from AN

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
    corecore