204 research outputs found
Effect of halo modelling on WIMP exclusion limits
WIMP direct detection experiments are just reaching the sensitivity required
to detect galactic dark matter in the form of neutralinos. Data from these
experiments are usually analysed under the simplifying assumption that the
Milky Way halo is an isothermal sphere with maxwellian velocity distribution.
Observations and numerical simulations indicate that galaxy halos are in fact
triaxial and anisotropic. Furthermore, in the cold dark matter paradigm
galactic halos form via the merger of smaller subhalos, and at least some
residual substructure survives. We examine the effect of halo modelling on WIMP
exclusion limits, taking into account the detector response. Triaxial and
anisotropic halo models, with parameters motivated by observations and
numerical simulations, lead to significant changes which are different for
different experiments, while if the local WIMP distribution is dominated by
small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change
Renormalization and asymptotic expansion of Dirac's polarized vacuum
We perform rigorously the charge renormalization of the so-called reduced
Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac
operator, describes atoms and molecules while taking into account vacuum
polarization effects. We consider the total physical density including both the
external density of a nucleus and the self-consistent polarization of the Dirac
sea, but no `real' electron. We show that it admits an asymptotic expansion to
any order in powers of the physical coupling constant \alphaph, provided that
the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1.
The renormalization parameter $
The ZEPLIN II dark matter detector: data acquisition system and data reduction
ZEPLIN-II is a two-phase (liquid/gas) xenon dark matter detector searching
for WIMP-nucleon interactions. In this paper we describe the data acquisition
system used to record the data from ZEPLIN-II and the reduction procedures
which parameterise the data for subsequent analysis.Comment: 11 pages, 10 figure
The ZEPLIN II dark matter detector: data acquisition system and data reduction
ZEPLIN-II is a two-phase (liquid/gas) xenon dark matter detector searching
for WIMP-nucleon interactions. In this paper we describe the data acquisition
system used to record the data from ZEPLIN-II and the reduction procedures
which parameterise the data for subsequent analysis.Comment: 11 pages, 10 figure
Calculating exclusion limits for Weakly Interacting Massive Particle direct detection experiments without background subtraction
Competitive limits on the weakly interacting massive particle (WIMP)
spin-independent scattering cross section are currently being produced by 76Ge
detectors originally designed to search for neutrinoless double beta decay,
such as the Heidelberg-Moscow and IGEX experiments. In the absence of
background subtraction, limits on the WIMP interaction cross section are set by
calculating the upper confidence limit on the theoretical event rate, given the
observed event rate. The standard analysis technique involves calculating the
90% upper confidence limit on the number of events in each bin, and excluding
any set of parameters (WIMP mass and cross-section) which produces a
theoretical event rate for any bin which exceeds the 90% upper confidence limit
on the event rate for that bin. We show that, if there is more than one energy
bin, this produces exclusion limits that are actually at a lower degree of
confidence than 90%, and are hence erroneously tight. We formulate criteria
which produce true 90% confidence exclusion limits in these circumstances,
including calculating the individual bin confidence limit for which the overall
probability that no bins exceeds this confidence limit is 90% and calculating
the 90% minimum confidence limit on the number of bins which exceed their
individual bin 90% confidence limits. We then compare the limits on the WIMP
cross-section produced by these criteria with those found using the standard
technique, using data from the Heidelberg-Moscow and IGEX experiments.Comment: 6 pages, 3 figures, 3 tables, shortened version to appear in Phys.
Rev. D, contents otherwise unchange
New Results from the Cryogenic Dark Matter Search Experiment
Using improved Ge and Si detectors, better neutron shielding, and increased
counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained
stricter limits on the cross section of weakly interacting massive particles
(WIMPs) elastically scattering from nuclei. Increased discrimination against
electromagnetic backgrounds and reduction of neutron flux confirm
WIMP-candidate events previously detected by CDMS were consistent with neutrons
and give limits on spin-independent WIMP interactions which are >2X lower than
previous CDMS results for high WIMP mass, and which exclude new parameter space
for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure
Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search
The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si
detectors to search for Weakly Interacting Massive Particles (WIMPs) via their
elastic-scattering interactions with nuclei while discriminating against
interactions of background particles. For recoil energies above 10 keV, events
due to background photons are rejected with >99.9% efficiency, and surface
events are rejected with >95% efficiency. The estimate of the background due to
neutrons is based primarily on the observation of multiple-scatter events that
should all be neutrons. Data selection is determined primarily by examining
calibration data and vetoed events. Resulting efficiencies should be accurate
to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed
fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent
with an earlier analysis with a more restrictive fiducial-volume cut.
Twenty-three WIMP candidate events are observed, but these events are
consistent with a background from neutrons in all ways tested. Resulting limits
on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude
unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}.
These limits border, but do not exclude, parameter space allowed by
supersymmetry models and accelerator constraints. Results are compatible with
some regions reported as allowed at 3-sigma by the annual-modulation
measurement of the DAMA collaboration. However, under the assumptions of
standard WIMP interactions and a standard halo, the results are incompatible
with the DAMA most likely value at >99.9% CL, and are incompatible with the
model-independent annual-modulation signal of DAMA at 99.99% CL in the
asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D;
v.2:clarified conclusions, added content and references based on referee's
and readers' comments; v.3: clarified introductory sections, added figure
based on referee's comment
Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms
We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to
describe relativistic electrons interacting with the Dirac sea, in an external
electrostatic potential. The model can be seen as a mean-field approximation of
Quantum Electrodynamics (QED) where photons and the so-called exchange term are
neglected. A state of the system is described by its one-body density matrix,
an infinite rank self-adjoint operator which is a compact perturbation of the
negative spectral projector of the free Dirac operator (the Dirac sea).
We study the minimization of the reduced BDF energy under a charge
constraint. We prove the existence of minimizers for a large range of values of
the charge, and any positive value of the coupling constant . Our
result covers neutral and positively charged molecules, provided that the
positive charge is not large enough to create electron-positron pairs. We also
prove that the density of any minimizer is an function and compute the
effective charge of the system, recovering the usual renormalization of charge:
the physical coupling constant is related to by the formula
, where
is the ultraviolet cut-off. We eventually prove an estimate on the
highest number of electrons which can be bound by a nucleus of charge . In
the nonrelativistic limit, we obtain that this number is , recovering
a result of Lieb.
This work is based on a series of papers by Hainzl, Lewin, Sere and Solovej
on the mean-field approximation of no-photon QED.Comment: 37 pages, 1 figur
Status of ZEPLIN II and ZEPLIN IV study
Abstract We discribe the construction status of ZEPLIN II detector, a 30-kg two-phase discriminating xenon detector to be installed in Boulby Mine, UK, for the direct detection of WIMP dark matter. Both scintillation and ionization will be measure in order to discriminate the radioactive background. ZEPLIN-II will have very high radioactive-background rejection efficiency. We will also discuss the study of ton scale ZEPLIN IV. The ZEPLIN program is a collaborative work of UCLA, TAMU, UKMDMC, and CNR Torino, Italy
Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector
Development of large mass detectors for low-energy neutrinos and dark matter
may allow supernova detection via neutrino-nucleus elastic scattering. An
elastic-scattering detector could observe a few, or more, events per ton for a
galactic supernova at 10 kpc ( m). This large yield, a
factor of at least 20 greater than that for existing light-water detectors,
arises because of the very large coherent cross section and the sensitivity to
all flavors of neutrinos and antineutrinos. An elastic scattering detector can
provide important information on the flux and spectrum of and
from supernovae. We consider many detectors and a range of target
materials from He to Pb. Monte Carlo simulations of low-energy
backgrounds are presented for the liquid-neon-based Cryogenic Low Energy
Astrophysics with Noble gases (CLEAN) detector. The simulated background is
much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.
- …