154 research outputs found

    Power balance analysis of ion Bernstein wave heating experiments in the Alcator C tokamak

    Get PDF

    Ion Bernstein wave experiments on the Alcator C tokamak

    Get PDF

    Kinetic modifications of C4 PEPC are qualitatively convergent, but larger in Panicum than in Flaveria

    Get PDF
    C4 photosynthesis results from a set of anatomical features and biochemical components that act together to concentrate CO2 within the leaf and boost productivity. This complex trait evolved independently many times, resulting in various realizations of the phenotype, but in all C4 plants the primary fixation of atmospheric carbon is catalyzed by phosphoenolpyruvate carboxylase. Comparisons of C4 and non-C4 PEPC from a few closely related species suggested that the enzyme was modified to meet the demands of the C4 cycle. However, very few C4 groups have been investigated, hampering general conclusions. To test the hypothesis that distant C4 lineages underwent convergent biochemical changes, we compare the kinetic variation between C4 and non-C4 PEPC from a previously assessed young lineage (Flaveria, Asteraceae) with those from an older lineage found within the distantly related grass family (Panicum). Despite the evolutionary distance, the kinetic changes between the non-C4 and C4 PEPC are qualitatively similar, with a decrease in sensitivity for inhibitors, an increased specificity (kcat/Km) for bicarbonate, and a decreased specificity (kcat/Km) for PEP. The differences are more pronounced in the older lineage Panicum, which might indicate that optimization of PEPC for the C4 context increases with evolutionary time

    Ion Bernstein wave heating and improved confinement on the Alcator C tokamak

    Get PDF

    A study of directly launched ion bernstein waves in a tokamak

    Get PDF

    Brane world corrections to Newton's law

    Full text link
    We discuss possible variations of the effective gravitational constant with length scale, predicted by most of alternative theories of gravity and unified models of physical interactions. After a brief general exposition, we review in more detail the predicted corrections to Newton's law of gravity in diverse brane world models. We consider various configurations in 5 dimensions (flat, de Sitter and AdS branes in Einstein and Einstein-Gauss-Bonnet theories, with and without induced gravity and possible incomplete graviton localization), 5D multi-brane systems and some models in higher dimensions. A common feature of all models considered is the existence of corrections to Newton's law at small radii comparable with the bulk characteristic length: at such radii, gravity on the brane becomes effectively multidimensional. Many models contain superlight perturbation modes, which modify gravity at large scale and may be important for astrophysics and cosmology.Comment: Brief review, 16 pages, 92 references. Some description and references adde

    Expansions of algebras and superalgebras and some applications

    Get PDF
    After reviewing the three well-known methods to obtain Lie algebras and superalgebras from given ones, namely, contractions, deformations and extensions, we describe a fourth method recently introduced, the expansion of Lie (super)algebras. Expanded (super)algebras have, in general, larger dimensions than the original algebra, but also include the Inonu-Wigner and generalized IW contractions as a particular case. As an example of a physical application of expansions, we discuss the relation between the possible underlying gauge symmetry of eleven-dimensional supergravity and the superalgebra osp(1|32).Comment: Invited lecture delivered at the 'Deformations and Contractions in Mathematics and Physics Workshop', 15-21 January 2006, Mathematisches Forschungsinstitut Oberwolfach, German

    Proton deflectometry of a capacitor coil target along two axes

    Get PDF
    A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding. Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform, quasi-static magnetic fields on the millimetre scale. Here, we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter. Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target. Using this dual-axis platform for proton deflectometry, robust measurements can be made of the evolution of magnetic fields in a capacitor coil target
    • …
    corecore