11 research outputs found
Perturbation theory for large Stokes number particles in random velocity fields
We derive a perturbative approach to study, in the large inertia limit, the
dynamics of solid particles in a smooth, incompressible and finite-time
correlated random velocity field. We carry on an expansion in powers of the
inverse square root of the Stokes number, defined as the ratio of the
relaxation time for the particle velocities and the correlation time of the
velocity field. We describe in this limit the residual concentration
fluctuations of the particle suspension, and determine the contribution to the
collision statistics produced by clustering. For both concentration
fluctuations and collision velocities, we analyze the differences with the
compressible one-dimensional case.Comment: Latex, 12 pages, 2 eps figures include
Kinematic simulation of turbulent flow and particle motions
SIGLEAvailable from British Library Document Supply Centre- DSC:D60416 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Dispersion modeling by kinematic simulation: Cloud dispersion model
International audienc
Particle dispersion in synthetic turbulent flows
We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson¿s law for the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and is discussed in terms of the values of a persistence parameter expressing the relative importance of the two above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances, the relative velocity correlation functions, as well as the relative trajectories