1,032 research outputs found

    Fermions in three-dimensional spinfoam quantum gravity

    Get PDF
    We study the coupling of massive fermions to the quantum mechanical dynamics of spacetime emerging from the spinfoam approach in three dimensions. We first recall the classical theory before constructing a spinfoam model of quantum gravity coupled to spinors. The technique used is based on a finite expansion in inverse fermion masses leading to the computation of the vacuum to vacuum transition amplitude of the theory. The path integral is derived as a sum over closed fermionic loops wrapping around the spinfoam. The effects of quantum torsion are realised as a modification of the intertwining operators assigned to the edges of the two-complex, in accordance with loop quantum gravity. The creation of non-trivial curvature is modelled by a modification of the pure gravity vertex amplitudes. The appendix contains a review of the geometrical and algebraic structures underlying the classical coupling of fermions to three dimensional gravity.Comment: 40 pages, 3 figures, version accepted for publication in GER

    Higgs-Boson Production Associated with a Single Bottom Quark in Supersymmetric QCD

    Full text link
    Due to the enhancement of the couplings between Higgs boson and bottom quarks in the minimal sypersymmetric standard model (MSSM), the cross section of the process pp(p\bar{p}) \to h^0b(h^0\bar{b})+X at hadron colliders can be considerably enhanced. We investigated the production of Higgs boson associated with a single high-p_T bottom quark via subprocess bg(\bar{b}g) \to h^0b(h^0\bar{b}) at hadron colliders including the next-to-leading order (NLO) QCD corrections in MSSM. We find that the NLO QCD correction in the MSSM reaches 50%-70% at the LHC and 60%-85% at the Fermilab Tevatron in our chosen parameter space.Comment: accepted by Phys. Rev.

    Helium-cluster decay widths of molecular states in beryllium and carbon isotopes

    Get PDF
    The α\alpha particle and 6^6He emissions from possible molecular states in beryllium and carbon isotopes have been studied using a mean-field-type cluster potential. Calculations can reproduce well the α\alpha-decay widths of excited states in 8^{8}Be, 12^{12}C and 20^{20}Ne. For the nucleus 10^{10}Be, we discussed the α\alpha-decay widths with different shapes or decay modes, in order to understand the very different decay widths of two excited states. The widths of 6^{6}He decay from 12^{12}Be and α\alpha decays from 13,14^{13,14}C are predicted, which could be useful for future experiments.Comment: 12 pgaes, 1 figur

    The Transformation from Translucent into Transparent Rare Earth Ions Doped Oxyfluoride Glass-Ceramics with Enhanced Luminescence

    Get PDF
    Article reporting a scenario where a translucent Er3+−Yb3+ doped oxyfluoride precursor glass-ceramic (P-GC) becomes transparent with increasing crystal size and crystallinity

    One-neutron removal reactions on neutron-rich psd-shell nuclei

    Full text link
    A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.Comment: 11 pages + 2 figure

    Coordinate-Space Hartree-Fock-Bogoliubov Description of Superfluid Fermi Systems

    Full text link
    Properties of strongly interacting, two-component finite Fermi systems are discussed within the recently developed coordinate-space Hartree-Fock-Bogoliubov (HFB) code {\hfbax}. Two illustrative examples are presented: (i) weakly bound deformed Mg isotopes, and (ii) spin-polarized atomic condensates in a strongly deformed harmonic trap.Comment: 4 pages, 2 figures, ENAM 2008 conference proceedings (EPJA

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    Rip/singularity free cosmology models with bulk viscosity

    Full text link
    In this paper we present two concrete models of non-perfect fluid with bulk viscosity to interpret the observed cosmic accelerating expansion phenomena, avoiding the introduction of exotic dark energy. The first model we inspect has a viscosity of the form ζ=ζ0+(ζ1ζ2q)H{\zeta} = {\zeta}_0 + ({\zeta}_1-{\zeta}_2q)H by taking into account of the decelerating parameter q, and the other model is of the form ζ=ζ0+ζ1H+ζ2H2{\zeta} = {\zeta}_0 + {\zeta}_1H + {\zeta}_2H^2. We give out the exact solutions of such models and further constrain them with the latest Union2 data as well as the currently observed Hubble-parameter dataset (OHD), then we discuss the fate of universe evolution in these models, which confronts neither future singularity nor little/pseudo rip. From the resulting curves by best fittings we find a much more flexible evolution processing due to the presence of viscosity while being consistent with the observational data in the region of data fitting. With the bulk viscosity considered, a more realistic universe scenario is characterized comparable with the {\Lambda}CDM model but without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-

    Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders

    Full text link
    We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for the associated production of a pseudoscalar Higgs boson with a bottom quark via bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron. We find that the NLO QCD correction in the MSSM reaches 4040%\sim50% at the LHC and 4545%\sim80% at the Tevatron in our chosen parameter space

    Analysis and Simulation of the Structure of Nanoparticles That Undergo a Surface-Driven Structural Transformation

    Get PDF
    This report addresses the analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation
    corecore