22 research outputs found

    Superluminal Signals: Causal Loop Paradoxes Revisited

    Get PDF
    Recent results demonstrating superluminal group velocities and tachyonic dispersion relations reopen the question of superluminal signals and causal loop paradoxes. The sense in which superluminal signals are permitted is explained in terms of pulse reshaping, and the self-consistent behavior which prevents causal loop paradoxes is illustrated by an explicit example.Comment: 6 pages, 3 figure

    A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation

    Full text link
    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012

    Influence of incommensurate dynamic charge-density wave scattering on the line shape of high-Tc_c cuprates

    Full text link
    We show that the spectral lineshape of superconducting La2x_{2-x}Srx_xCuO4_4 (LSCO) and Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212) can be well described by the coupling of the charge carriers to collective incommensurate charge-density wave (CDW) excitations. Our results imply that besides antiferromagnetic (AF) fluctuations also low-energy CDW modes can contribute to the observed dip-hump structure in the Bi2212 photoemission spectra. In case of underdoped LSCO we propose a possible interpretation of ARPES data in terms of a grid pattern of fluctuating stripes where the charge and spin scattering directions deviate by α=π/4\alpha=\pi/4. Within this scenario we find that the spectral intensity along (0,0)(π,π)(0,0) \to (\pi,\pi) is strongly suppressed consistent with recent photoemission experiments. In addition the incommensurate charge-density wave scattering leads to a significant broadening of the quasiparticle-peak around (π,0)(\pi,0).Comment: 5 pages, 4 figure
    corecore