221 research outputs found

    Self-diffusion of reversibly aggregating spheres

    Get PDF
    Reversible diffusion limited cluster aggregation of hard spheres with rigid bonds was simulated and the self diffusion coefficient was determined for equilibrated systems. The effect of increasing attraction strength was determined for systems at different volume fractions and different interaction ranges. It was found that the slowing down of the diffusion coefficient due to crowding is decoupled from that due to cluster formation. The diffusion coefficient could be calculated from the cluster size distribution and became zero only at infinite attraction strength when permanent gels are formed. It is concluded that so-called attractive glasses are not formed at finite interaction strength.Comment: 10 figure

    Diffusion limited cluster aggregation with irreversible slippery bonds

    Get PDF
    Irreversible diffusion limited cluster aggregation (DLCA) of hard spheres was simulated using Brownian cluster dynamics. Bound spheres were allowed to move freely within a specified range, but no bond breaking was allowed. The structure and size distribution of the clusters was investigated before gelation. The pair correlation function and the static structure factor of the gels were determined as a function of the volume fraction and time. Slippery bonds led to local densification of the clusters and the gels, with a certain degree of order. At low volume fractions densification of the clusters occurred during their growth, but at higher volume fractions it occurred mainly after gelation. At very low volume fractions, the large-scale structure (fractal dimension), size distribution and growth kinetics of the clusters was found to be close to that known for DLCA with rigid bonds. Restructuring of the gels continued for long times, indicating that aging processes in systems with strong attraction do not necessarily involve bond breaking. The mean-square displacement of particles in the gels was determined. It is shown to be highly heterogeneous and to increase with decreasing volume fraction

    Crystallization and dynamical arrest of attractive hard spheres

    Get PDF
    International audienceCrystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition

    An Automatic Invisible Axion In The SUSY Preon Model

    Full text link
    It is shown that the recently proposed preon model which provides a unified origin of the diverse mass scale and an explanation of family replication as well as of inter-family mass-hierarchy, possesses a Peccei-Quinn symmetry whose spontaneous breaking leads to an automatic invisible axion. Existence of the PQ-symmetry is simply a consequence of supersymmetry and requirement of minimality in the field-content and interactions, which propose that the lagrangian should possess only those terms which are dictated by the gauge principle and no others. In addition to the axion, the model also generates two superlight Goldstone bosons and their superpartners which are cosmologically safe.Comment: (TeX file) 16 Page

    Signatures of Nucleon Disappearance in Large Underground Detectors

    Full text link
    For neutrons bound inside nuclei, baryon instability can manifest itself as a decay into undetectable particles (e.g., nνννˉ\it n \to \nu \nu \bar{\nu} ), i.e., as a disappearance of a neutron from its nuclear state. If electric charge is conserved, a similar disappearance is impossible for a proton. The existing experimental lifetime limit for neutron disappearance is 4-7 orders of magnitude lower than the lifetime limits with detectable nucleon decay products in the final state [PDG2000]. In this paper we calculated the spectrum of nuclear de-excitations that would result from the disappearance of a neutron or two neutrons from 12^{12}C. We found that some de-excitation modes have signatures that are advantageous for detection in the modern high-mass, low-background, and low-threshold underground detectors, where neutron disappearance would result in a characteristic sequence of time- and space-correlated events. Thus, in the KamLAND detector [Kamland], a time-correlated triple coincidence of a prompt signal, a captured neutron, and a β+\beta^{+} decay of the residual nucleus, all originating from the same point in the detector, will be a unique signal of neutron disappearance allowing searches for baryon instability with sensitivity 3-4 orders of magnitude beyond the present experimental limits.Comment: 13 pages including 6 figures, revised version, to be published in Phys.Rev.

    Observing Nucleon Decay in Lead Perchlorate

    Get PDF
    Lead perchlorate, part of the OMNIS supernova neutrino detector, contains two nuclei, 208Pb and 35Cl, that might be used to study nucleon decay. Both would produce signatures that will make them especially useful for studying less-well-studied neutron decay modes, e.g., those in which only neutrinos are emitted.Comment: 6 pages, 2 figure

    Phase separation and percolation of reversibly aggregating spheres with a square-well attraction potential

    Get PDF
    International audienceReversible aggregation of spheres is simulated using a novel method in which clusters of bound spheres diffuse collectively with a diffusion coefficient proportional to their radius. It is shown that the equilibrium state is the same as with other simulation techniques, but with the present method more realistic kinetics are obtained. The behaviour as a function of volume fraction and interaction strength was tested for two different attraction ranges. The binodal and the percolation threshold were determined. The cluster structure and size distribution close to the percolation threshold were found to be consistent with the percolation model. Close to the binodal phase separation occurred through the growth of spherical dense domains, while for deep quenches a system spanning network is formed that coarsens with a rate that decreases with increasing attraction. We found no indication for arrest of the coarsening

    Radiative processes (tau -> mu gamma, mu -> e gamma and muon g-2) as probes of ESSM/SO(10)

    Full text link
    The Extended Supersymmetric Standard Model (ESSM), motivated on several grounds, introduces two vectorlike families (16 + 16-bar) of SO(10)) with masses of order one TeV. It is noted that the successful predictions of prior work on fermion masses and mixings, based on MSSM embedded in SO(10), can be retained rather simply within the ESSM extension. These include an understanding of the smallness of V_{cb} ~ 0.04 and the largeness of nu_mu - nu_tau oscillation angle, sin^2 2 theta_{nu_mu nu_tau}^{osc} ~ 1. We analyze the new contributions arising through the exchange of the vectorlike families of ESSM to radiative processes including tau -> mu gamma, mu -> e gamma, b -> s gamma, EDM of the muon and the muon (g-2). We show that ESSM makes significant contributions especially to the decays tau -> mu gamma and mu -> e gamma and simultaneously to muon (g-2). For a large and plausible range of relevant parameters, we obtain: a_mu^{ESSM} ~ +(10-40) times 10^{-10}, with a correlated prediction that tau -> mu gamma should be discovered with an improvement in its current limit by a factor of 3-20. The implications for mu -> e gamma are very similar. The muon EDM is within reach of the next generation experiments. Thus, ESSM with heavy leptons being lighter than about 700 GeV (say) can be probed effectively by radiative processes before a direct search for these vectorlike leptons and quarks is feasible at the LHC.Comment: 27 pages LaTex, 2 figure

    Unifying flipped SU(5) in five dimensions

    Full text link
    It is shown that embedding a four-dimensional flipped SU(5) model in a five-dimensional SO(10) model, preserves the best features of both flipped SU(5) and SO(10). The missing partner mechanism, which naturally achieves both doublet-triplet splitting and suppression of d=5 proton decay operators, is realized as in flipped SU(5), while the gauge couplings are unified as in SO(10). The masses of down quarks and charged leptons, which are independent in flipped SU(5), are related by the SO(10). Distinctive patterns of quark and lepton masses can result. The gaugino mass M_1 is independent of M_3 and M_2, which are predicted to be equal.Comment: revised version-to appear in PRD, 23 pages, 3 figures, ReVTeX

    Gauging U(1) symmetries and the number of right-handed neutrinos

    Full text link
    In this letter we consider that assuming: a) that the only left-handed neutral fermions are the active neutrinos, b) that BLB-L is a gauge symmetry, and c) that the LL assignment is restricted to the integer numbers, the anomaly cancellation imply that at least three right-handed neutrinos must be added to the minimal representation content of the electroweak standard model. However, two types of models arise: i) the usual one where each of the three identical right-handed neutrinos has total lepton number L=1; ii) and the other one in which two of them carry L=4 while the third one carries L=5L=-5.Comment: Published version in PLB forma
    corecore