82 research outputs found

    Point interactions in one dimension and holonomic quantum fields

    Get PDF
    We introduce and study a family of quantum fields, associated to delta-interactions in one dimension. These fields are analogous to holonomic quantum fields of M. Sato, T. Miwa and M. Jimbo. Corresponding field operators belong to an infinite-dimensional representation of the group SL(2,\Rb) in the Fock space of ordinary harmonic oscillator. We compute form factors of such fields and their correlation functions, which are related to the determinants of Schroedinger operators with a finite number of point interactions. It is also shown that these determinants coincide with tau functions, obtained through the trivialization of the det\mathrm{det}^*-bundle over a Grassmannian associated to a family of Schroedinger operators.Comment: 17 page

    Effects of anisotropic spin-exchange interactions in spin ladders

    Full text link
    We investigate the effects of the Dzialoshinskii-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions on various thermodynamic and magnetic properties of a spin 1/2 ladder. Using the Majorana fermion representation, we derive the spectrum of low energy excitations for a pure DM interaction and in presence of a superimposed KSEA interaction. We calculate the various correlation functions for both cases and discuss how they are modified with respect to the case of an isotropic ladder. We also discuss the electron spin resonance (ESR) spectrum of the system and show that it is strongly influenced by the orientation of the magnetic field with respect to the Dzialoshinskii-Moriya vector. Implications of our calculations for NMR and ESR experiments on ladder systems are discussed.Comment: 14 pages, 4 eps figures, corrected calculation of NMR rate (v3

    The two-dimensional random-bond Ising model, free fermions and the network model

    Full text link
    We develop a recently-proposed mapping of the two-dimensional Ising model with random exchange (RBIM), via the transfer matrix, to a network model for a disordered system of non-interacting fermions. The RBIM transforms in this way to a localisation problem belonging to one of a set of non-standard symmetry classes, known as class D; the transition between paramagnet and ferromagnet is equivalent to a delocalisation transition between an insulator and a quantum Hall conductor. We establish the mapping as an exact and efficient tool for numerical analysis: using it, the computational effort required to study a system of width MM is proportional to M3M^{3}, and not exponential in MM as with conventional algorithms. We show how the approach may be used to calculate for the RBIM: the free energy; typical correlation lengths in quasi-one dimension for both the spin and the disorder operators; even powers of spin-spin correlation functions and their disorder-averages. We examine in detail the square-lattice, nearest-neighbour ±J\pm J RBIM, in which bonds are independently antiferromagnetic with probability pp, and ferromagnetic with probability 1p1-p. Studying temperatures T0.4JT\geq 0.4J, we obtain precise coordinates in the pTp-T plane for points on the phase boundary between ferromagnet and paramagnet, and for the multicritical (Nishimori) point. We demonstrate scaling flow towards the pure Ising fixed point at small pp, and determine critical exponents at the multicritical point.Comment: 20 pages, 25 figures, figures correcte

    Quantum criticalities in a two-leg antiferromagnetic S=1/2 ladder induced by a staggered magnetic field

    Full text link
    We study a two-leg antiferromagnetic spin-1/2 ladder in the presence of a staggered magnetic field. We consider two parameter regimes: strong (weak) coupling along the legs and weak (strong) coupling along the rungs. In both cases, the staggered field drives the Haldane spin-liquid phase of the ladder towards a Gaussian quantum criticality. In a generalized spin ladder with a non-Haldane, spontaneously dimerized phase, the staggered magnetic field induces an Ising quantum critical regime. In the vicinity of the critical lines, we derive low-energy effective field theories and use these descriptions to determine the dynamical response functions, the staggered spin susceptibility and the string order parameter.Comment: 29 pages of revtex, 10 figure

    Critical behavior of weakly-disordered anisotropic systems in two dimensions

    Full text link
    The critical behavior of two-dimensional (2D) anisotropic systems with weak quenched disorder described by the so-called generalized Ashkin-Teller model (GATM) is studied. In the critical region this model is shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behavior of the two-spin correlation function. The equation of state at criticality is also obtained in this framework. We find that random models described by the GATM belong to the same universality class as that of the two-dimensional Ising model. The critical exponent ν\nu of the correlation length for the 3- and 4-state random-bond Potts models is also calculated in a 3-loop approximation. We show that this exponent is given by an apparently convergent series in ϵ=c12\epsilon=c-\frac{1}{2} (with cc the central charge of the Potts model) and that the numerical values of ν\nu are very close to that of the 2D Ising model. This work therefore supports the conjecture (valid only approximately for the 3- and 4-state Potts models) of a superuniversality for the 2D disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Magnetization and dimerization profiles of the cut two-leg spin ladder and spin-1 chain

    Full text link
    The physical properties of the edge states of the cut two-leg spin ladder are investigated by means of the bosonization approach. By carefully treating boundary conditions, we derive the existence of spin-1/2 edge states in the spin ladder with a ferromagnetic rung exchange and for the open spin-1 Heisenberg chain. In contrast, such states are absent in the antiferromagnetic rung coupling case. The approach, based on a mapping onto decoupled semi-infinite off-critical Ising models, allows us to compute several physical quantities of interest. In particular, we determine the magnetization and dimerization profiles of the cut two-leg spin ladder and of the open biquadratic spin-1 chain in the vicinity of the SU(2)2_2 WZNW critical point.Comment: RevTeX 4, no figure, 26 page

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals
    corecore