518 research outputs found

    Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells

    Get PDF
    Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid-cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4 degrees C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid-cholesterol microdomains in living cells

    Orbital currents and charge density waves in a generalized Hubbard ladder

    Full text link
    We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping delta away from half-filling, finite-size density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k_F and 4k_F for the currents and densities, where 2k_F = pi(1-delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities.Comment: 24 pages, 17 figures. Follow-up to cond-mat/0209444. (v2) Some revisions in text, improved presentation. Minor changes in title, abstract and reference

    Integer Programming: Optimization and Evaluation Are Equivalent

    Get PDF
    Link to conference publication published by Springer: http://dx.doi.org/10.1007/978-3-642-03367-4We show that if one can find the optimal value of an integer linear programming problem in polynomial time, then one can find an optimal solution in polynomial time. We also present a proper generalization to (general) integer programs and to local search problems of the well-known result that optimization and augmentation are equivalent for 0/1-integer programs. Among other things, our results imply that PLS-complete problems cannot have “near-exact” neighborhoods, unless PLS = P.United States. Office of Naval Research (ONR grant N00014-01208-1-0029

    Staggered flux and stripes in doped antiferromagnets

    Full text link
    We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux in the doped two dimensional tJt-J-model. First we consider the properties of uniform systems and then we extend the investigation to include models of striped phases where a fictitious flux is generated in the domain wall providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics of uniform systems with stripes directed along the (10)- and (11)-directions of the lattice, finding that phase-separation generically turns out to be energetically favorable. In addition to the numerical calculations, we present topological arguments relating flux and staggered flux to geometric properties of the spin texture. The calculation is based on a projection of the electron operators of the tJt-J model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure

    Haldane-Gapped Spin Chains as Luttinger Liquids: Correlation Functions at Finite Field

    Full text link
    We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains in the presence of a magnetic field exceeding the attendant spin gap. For temperatures much smaller than the gap, the spin chains exhibit Luttinger liquid behavior. We compute exactly both the corresponding Luttinger parameter and the Fermi velocity as a function of magnetic field. This enables the computation of a number of correlators from which we derive the spin conductance, the expected form of the dynamic structure factor relevant to inelastic neutron scattering experiments, and NMR relaxation rates. We also comment upon the robustness of the magnetically induced gapless phase both to finite temperature and finite couplings between neighbouring chains.Comment: 32 pages, 8 figures; published version includes additions discussing the robustness of the magnetically induced gapless phase to ordering between chains as well as the relationship between the spin-1 chains and spin-1/2 ladders in the presence of a magnetic fiel

    Magnetization-plateau state of the S=3/2 spin chain with single ion anisotropy

    Full text link
    We reexamine the numerical study of the magnetized state of the S=3/2 spin chain with single ion anisotropy D(> 0) for the magnetization M=M_{S}/3, where M_{S} is the saturation magnetization. We find at this magnetization that for D<D_{c1}=0.387 the system is critical and the magnetization plateau does not appear. For D > D_{c1}, the parameter region is divided into two parts D_{c1} < D < D_{c2}=0.943 and D_{c2} < D. In each region, the system is gapful and the M=M_{S}/3 magnetization plateau appears in the magnetization process. From our numerical calculation, the intermediate region D_{c1} < D < D_{c2} should be characterized by a magnetized valence-bond-solid state.Comment: 6 pages, 8 figure

    CuSiO_3 : a quasi - one - dimensional S=1/2 antiferromagnetic chain system

    Full text link
    CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}\cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility, magnetization and specific heat measurements on powder samples. The magnetic susceptibility \chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (\alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at \mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3

    The Inter-organizational Business Case in ES Implementations: Exploring the Impact of Coordination Structures and Their Properties

    Get PDF
    Developing the business case (BC) for an inter-organizational network is a major challenge. Factors like competition and differences in semantics between actors influence the stakeholders’ willingness to share information necessary for the BC development. In this paper we develop an exploratory framework showing the effect that coordination structure and project scope have on the development of a shared BC. We defined several coordination properties, such as competition, decision making location and decision power that mitigate this effect. We applied the framework in a case study where a BC is developed for an inter-organizational network. Our findings show that current BC development methods need to be re-stated and complemented by extra tools and interventions to support stakeholders in the inter-organizational specific setting

    Competing Orders in Coupled Luttinger Liquids

    Full text link
    We consider the problem of two coupled Luttinger liquids both at half filling and at low doping levels, to investigate the problem of competing orders in quasi-one-dimensional strongly correlated systems. We use bosonization and renormalization group equations to investigate the phase diagrams, to determine the allowed phases and to establish approximate boundaries among them. Because of the chiral translation and reflection symmetry in the charge mode away from half filling, orders of charge density wave (CDW) and spin-Peierls (SP) diagonal current (DC) and dd-density wave (DDW) form two doublets and thus can be at most quasi-long range ordered. At half-filling, umklapp terms break this symmetry down to a discrete group and thus Ising-type ordered phases appear as a result of spontaneous breaking of the residual symmetries. Quantum disordered Haldane phases are also found, with finite amplitudes of pairing orders and triplet counterparts of CDW, SP, DC and DDW. Relations with recent numerical results and implications to similar problems in two dimensions are discussed.Comment: 16 pages, 5 figures, 4 tables. Revised manuscript; a misprint in Eq. B3 has been corrected. The paper is already in print in PR
    corecore