
Integer Programming:
Optimization and Evaluation are Equivalent

James B. Orlin1, Abraham P. Punnen2, and Andreas S. Schulz1

1 Massachusetts Institute of Technology, Cambridge, MA
2 Simon Fraser University, Surrey, BC

Abstract We show that if one can find the optimal value of an inte-
ger linear programming problem in polynomial time, then one can find
an optimal solution in polynomial time. We also present a proper gen-
eralization to (general) integer programs and to local search problems
of the well-known result that optimization and augmentation are equiv-
alent for 0/1-integer programs. Among other things, our results imply
that PLS-complete problems cannot have “near-exact” neighborhoods,
unless PLS = P.

1 Introduction

The following question arises naturally in the study of optimization problems
(see, e.g., [12, Chap. 15.2]): Is computing the value of an optimal solution as
hard as actually finding an optimal solution? Crescenzi and Silvestri [4] initiated
the formal study of the relative complexity of evaluating the optimal cost of an
optimization problem versus constructing an optimal solution, and they provided
sufficient and necessary conditions for the existence of optimization problems for
which obtaining an optimal solution is harder than computing the optimal value.
Ausiello et al. [2] and Johnson [8] pointed out that evaluation is actually as hard
as finding an optimal solution for all optimization problems whose associated
decision problems are NP-complete. Schulz [16] studied the relative complexity of
several problems related to 0/1-integer programming,3 including augmentation,
optimization and evaluation, all of which are polynomial-time equivalent. In this
paper, we prove that evaluation and optimization are polynomial-time equivalent
for all integer linear programming problems. That is, given a matrix A ∈ Zm×n
and a vector b ∈ Zm, a polynomial-time algorithm for finding the optimal value
of min{cx : Ax ≥ b, x ∈ Zn+}, for any c ∈ Zn, implies the existence of such
an algorithm for finding an optimal solution, arg min{cx : Ax ≥ b, x ∈ Zn+}. In
fact, our result is slightly stronger than this. As long as we are given bounds
on the values that individual variables may attain, the matrix A and the vector
b need not be known explicitly. An evaluation oracle, which accepts as input
any objective function vector c and returns the optimal objective function value,
suffices. Our proof is constructive.

3 In a 0/1-integer programming problem all variables can have values 0 or 1 only.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4429562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J.B. Orlin, A.P. Punnen, and A.S. Schulz

The proof itself gives rise to a new problem, related to questions typically
brought up in postoptimality analysis of optimization problems, which we call
the “unit increment problem:” Given an optimal solution x0 with respect to
an objective function vector c, find an optimal solution for c + ej , where ej is
the j-th unit vector.4 We show that an integer linear program can be solved
in polynomial time if and only if its unit increment problem can be solved in
polynomial time. For 0/1-integer programs, we prove that the unit increment
problem is polynomial-time equivalent to the augmentation problem.5 Hence,
we have a proper generalization (to general integer programs) of a result by
Grötschel and Lovász [6] and Schulz et al. [17], who showed that optimization
and augmentation are polynomial-time equivalent for 0/1-integer programs. A
relaxation to the augmentation problem, the ε-augmentation problem, can be
defined as follows: Given an objective function vector c and a feasible solution
x, find a feasible solution with better objective function value, or assert that
x is ε-optimal. Here, ε > 0, and a solution x is ε-optimal if cx ≤ (1 + ε)cx′

for all feasible solutions x′. The corresponding unit increment problem, the ε-
unit increment problem, is defined as follows: Given an index j and an ε-optimal
solution with respect to an objective function vector c, find an ε-optimal solution
for c+ej . We show that an ε-optimal solution can be obtained in polynomial time
if and only if the ε-unit increment problem can be solved in polynomial time.
Moreover, we show that for 0-1 integer programs, the ε-augmentation problem
and the ε-unit increment problem are polynomial-time equivalent as well.

The concepts of unit increment and augmentation extend naturally to local
search, with interesting implications. For an integer programming or combinato-
rial optimization problem with a neighborhood function N , the local augmenta-
tion problem, given a feasible solution x and an objective function vector c, asks
for a solution in the neighborhood N(x) of x of better objective function value,
if one exists. The local unit increment problem is defined similarly: Given an
index j and a locally optimal solution x with respect to c, find a locally optimal
solution for c + ej . We show that for a given neighborhood function, a locally
optimal solution can be computed in polynomial time if and only if the local
unit increment problem can be solved in polynomial time. However, in contrast
to the cases of global optimization and ε-optimization, for 0/1-integer programs,
the local unit increment problem and the local augmentation problem are not
known to be equivalent. In fact, it follows from our results that if polynomial
solvability of the local augmentation problem implies the polynomial solvability

4 In this part of the paper we assume, for convenience, that all objective function
coefficients are nonnegative. Most of our results hold true in general, if the unit
increment problem is extended to finding optimal solutions for c± ej .

5 The augmentation problem is defined as follows: Given a feasible solution and an
objective function vector, find a feasible solution of better objective function value,
if one exists.

Optimization and Evaluation are Equivalent 3

of the local unit increment problem, then all PLS-complete6 problems can be
solved in polynomial time.

A neighborhood function is said to be “exact” if every locally optimal solution
is guaranteed to be globally optimal. A neighborhood function is said to be
“near exact” if the objective function value of any locally optimal solution is no
worse than that of all but a polynomial number of feasible solutions. Near-exact
neighborhoods are related to the domination number of local search heuristics
[7]. We show that, for 0/1-integer programs, polynomial solvability of the local
augmentation problem implies polynomial solvability of the local optimization
problem whenever the corresponding neighborhood is near exact. This implies
that no PLS-complete problem can possess a near-exact neighborhood, unless
PLS = P.

The rest of the paper is organized as follows. In Sect. 2 we establish that opti-
mization and evaluation are polynomial-time equivalent for integer programming
problems. In Sect. 3, we show that the unit increment problem and the optimiza-
tion problem are polynomial-time equivalent. We also give a direct proof that,
for 0/1-integer programming problems, augmentation and unit increment are
polynomial-time equivalent. In Sect. 4 we extend these results to ε-optimization,
ε-augmentation, and ε-unit increment. Section 5 contains our results on local
search; in particular, we show that even for 0/1-integer programs, a local unit
increment oracle is stronger than a local augmentation oracle, unless PLS = P.

2 Evaluation versus Optimization

It is well known (see, e.g. [15, Chap. 17.1]) that if an integer program has a
finite optimum, then it has an optimal solution of size (i.e., encoding length)
polynomially bounded by the size of the input. Hence, instead of considering
min{cx : Ax ≥ b, x ∈ Zn+}, we may restrict ourselves to solving min{cx : Ax ≥
b, x ≤ u, x ∈ Zn+}, for a vector u ∈ Zn+ whose encoding length is polynomial in
that of A, b, and c. From now on, we therefore consider a family F of integer
programming problems that is described as follows. For each instance of the
family we are given a vector u ∈ Zn+ such that the set X ⊆ Zn of feasible
solutions is contained in {0, 1, . . . , u1} × {0, 1, . . . , u2} × · · · × {0, 1, . . . , un}. We
are also given an evaluation oracle that contains the only additional information
that we have on X.7 (In particular, we do not explicitly need to know a matrix A
and a vector b such thatX = {x ∈ Zn+ : Ax ≥ b, x ≤ u}.) For input vector c ∈ Zn,

6 The complexity classes PLS and PLS-complete were introduced by Johnson et al. [9]
to capture the difficulty of finding local optima. Prominent PLS-complete problems
include the max-cut problem with the flip neighborhood and the graph partitioning
problem with the swap neighborhood [14], the traveling salesman problem with the
k-exchange neighborhood (for sufficiently large, but constant k) [10], and the problem
of finding pure-strategy Nash equilibria in congestion games [5].

7 We may assume, without loss of generality, that there exists a feasible solution, i.e.,
X 6= ∅. Otherwise both oracles, evaluation and optimization, would have to detect
infeasibility.

4 J.B. Orlin, A.P. Punnen, and A.S. Schulz

the oracle returns the optimal objective function value of min{cx : x ∈ X}. The
following is our main result.

Theorem 1. Given a family F of integer programming problems described by
an evaluation oracle, there is an oracle-polynomial time algorithm for solving the
optimization problem.

Proof. Let min{cx : x ∈ X} be the optimization problem to be solved, given
by an evaluation oracle and a vector u ∈ Zn+ such that X ⊆ {0 ≤ x ≤ u}. The
main idea is as follows. Among all optimal solutions, let x′ be the one that is
lexicographically minimal. We perturb c in such a way that x′ remains optimal
for the perturbed vector c′ and is also optimal for the objective function vectors
c′ + ej , for all j = 1, 2, . . . , n. With n + 1 calls of the evaluation oracle we can
then recover x′ via x′j = (c′ + ej)x′ − c′x′, for j = 1, 2, . . . , n. If the size of c′ is
sufficiently small, this yields an oracle-polynomial time algorithm.

Here are the details. Let U := max{uj : j = 1, 2, . . . , n}+ 1. We define c′ as
follows:

c′j := U2n+1cj + U2(n−j)+1, for j = 1, 2, . . . , n.

Note that the encoding length of c′ is indeed polynomial in that of c and u. We
first show that, (i), every solution x∗ that is optimal for c′ is also optimal for c.
In fact, for any x ∈ X, we obtain that

cx∗ ≤ c′x∗

U2n+1
≤ c′x

U2n+1
= cx+

∑n
j=1 U

2(n−j)+1xj

U2n+1
< cx+ 1.

Together with the integrality of c, x∗, and x, this implies that cx∗ ≤ cx, prov-
ing (i). We now show that, (ii), if x is an optimal solution for c that is different
from x′, then c′(x′ − x) ≤ −U . Let i be the first index for which x′i < xi. Then,

c′(x′ − x) = U2(n−i)+1(x′i − xi) +
n∑

j=i+1

U2(n−j)+1(x′j − xj)

≤ −U2(n−i)+1 +
n∑

j=i+1

U2(n−j)+2

≤ −U.

It remains to show that x′ is optimal for c′ + ej , for an arbitrary, but fixed
index j ∈ {1, 2, . . . , n}. So, let x be some feasible solution different from x′. We
distinguish two cases. If x is optimal for c, then, with the help of (ii), we get

(c′ + ej)(x′ − x) = c′(x′ − x) + (x′j − xj) ≤ −U + U = 0.

If x is not optimal for c, we have

c′(x′ − x) = U2n+1c(x′ − x) +
n∑
j=1

U2(n−j)+1(x′j − xj)

≤ −U2n+1 +
n∑
j=1

U2(n−j)+2 ≤ −U.

Optimization and Evaluation are Equivalent 5

Hence, (c′ + ej)(x′ − x) ≤ 0. Thus, x′ is optimal for c′ and c′ + ej , and x′j =
(c′ + ej)x′ − c′x′. In particular, the j-th component of x′ can be computed by
two calls of the evaluation oracle. ut

3 The Unit Increment Problem and Global Optimization

In this section we assume that all objective function vectors are nonnegative, for
convenience. All results can be extended in a straightforward way to arbitrary
objective function vectors. If c is an objective function vector, let C := max{cj :
j = 1, 2, . . . , n} and α := 1 + dlog2 Ce. Then each cj can be represented as a
binary number using α bits. Let bj = (bj1, b

j
2, . . . , b

j
α) with bji ∈ {0, 1} be this

representation. Moreover, let ckj be the number represented by the k leading bits
of bj . That is, ckj :=

∑k
i=1 2k−ibji . Thus c1j ∈ {0, 1}, cαj = cj , and ck+1

j = 2ckj+bjk+1

for all k = 1, 2, . . . , α− 1 and j = 1, 2, . . . , n.
Let min{cx : x ∈ X} with X ⊆ Zn+ be an instance of the optimization

problem. We assume that an oracle Unit-Inc is available which with input j,
c+ej , and an optimal solution x0 with respect to c, computes an optimal solution
x∗ for min{(c+ ej)x : x ∈ X}. We consider the following algorithm.

Algorithm UI

begin
let x0 be any feasible solution
set c∗j := 0 for j = 1 to n
for k = 1 to α do

for j = 1 to n do c∗j := 2c∗j
S := {j : bjk = 1}
while S 6= ∅ do

choose j ∈ S
S := S \ {j}
c∗j := c∗j + 1
If x0

j > 0 then
call Unit-Inc(c∗, x0, x∗, j)
x0 := x∗

endif
endwhile

endfor
output x0

end

Theorem 2. Let a family of optimization problems with linear objective func-
tions be given by a unit-increment oracle. Then algorithm UI computes an opti-
mal solution in oracle-polynomial time.

Proof. Note that at the end of the k-th iteration of the main loop we have
c∗ = ck. Assume that at the beginning of the k-th iteration of the main loop, x0

6 J.B. Orlin, A.P. Punnen, and A.S. Schulz

is an optimal solution to min{ck−1x : x ∈ X}. (For convenience, we let c0 = 0.)
Then x0 continues to be an optimal solution if we change the objective function
to 2ck−1. Thus at the end of the while loop, the oracle Unit-Inc guarantees that
x0 is an optimal solution to min{ckx : x ∈ X}. The correctness of the algorithm
follows by induction over k. ut

Hence, if one can find a feasible solution in polynomial time and if one can
solve the unit increment problem in polynomial time, then one can determine an
optimal solution in polynomial time. For the assignment problem on a bipartite
graph on n nodes and m edges, the general algorithm described above terminates
in O(nm logC) time. This is because the unit increment problem for this special
case can be solved in O(m) time. Although there are special-purpose algorithms
with better worst case bounds to solve the assignment problem, it is interesting
to note that the general algorithm UI achieves a good time bound.

Algorithm UI is a generalization of the bit scaling algorithm studied exten-
sively in the network flow literature (see, e.g., [1]) and in the context of 0/1-
integer programming (see, e.g., [16]). The new feature here is the use of the unit
increment oracle. This allows us to compare the computational complexity of op-
timization problems and unit increment problems and also provides a framework
for our study of ε-optimization and local optimization. Theorem 2 establishes
that an optimization problem with linear objective function can be solved in
polynomial time if and only if the corresponding unit increment problem can
be solved in polynomial time. Alternatively, if the optimization problem is NP-
hard, then the corresponding unit increment problem is also NP-hard. Thus the
additional information available for the unit increment problem (i.e., an optimal
solution for the original objective function) is not of much help for NP-hard prob-
lems. This provides additional evidence that postoptimality analysis is typically
hard for NP-hard problems (see, e.g., [3,13,18] for related results).

We now examine the relationship between the unit increment problem and
the augmentation problem.

Lemma 3. Let x0 be an optimal solution to min{cx : x ∈ X}, and let j be a
given index, 1 ≤ j ≤ n. If x ∈ X is a feasible solution, then (c+ej)(x0−x) ≤ x0

j .

Proof. Since x is a feasible solution to min{cx : x ∈ X}, cx0 ≤ cx. Thus (c +
ej)x0 = cx0 + x0

j ≤ cx+ x0
j ≤ (c+ ej)x+ x0

j . ut

The next theorem is, in principle, a consequence of the before-mentioned
equivalence between augmentation and optimization for 0/1-integer programs,
and Theorem 2. However, the following proof provides a Karp reduction from
the unit increment problem to the augmentation problem.

Theorem 4. For 0/1-integer programs, the unit increment problem and the aug-
mentation problem are polynomial-time equivalent.

Proof. Assume that X ⊆ {0, 1}n is given by an augmentation oracle. Consider
the instance min{cx : x ∈ X} and its unit increment version min{(c+ ej)x : x ∈

Optimization and Evaluation are Equivalent 7

X} together with respective optimal solutions x0 (given) and x∗ (unknown). By
Lemma 3,

(c+ ej)(x0 − x∗) ≤ 1. (1)

Since c ∈ Zn, one application of the augmentation oracle starting with x0 either
declares that x0 is optimal for min{(c + ej)x : x ∈ X} or finds an improving
solution which must be optimal for min{(c + ej)x : x ∈ X} in view of (1). The
other direction is implied by Theorem 2. ut

Using Lemma 3 we have the following result for general integer programs. Let
min{cx : x ∈ X} be an instance and x0 be an optimal solution. Let min{(c+ej)x :
x ∈ X} be the corresponding j-th unit increment instance.

Theorem 5. Given x0 ∈ arg min{cx : x ∈ X} and an augmentation oracle,
min{(c+ ej)x : x ∈ X} can be solved by O(x0

j) calls of the augmentation oracle.

Theorems 2 and 5 show that for an integer linear program for which x ≤ u for
all x ∈ X and where the components of u are bounded above by a polynomial of
the remaining input data, the optimization problem can be solved in polynomial
time whenever the augmentation problem can be solved in polynomial time.

4 The Unit Increment Problem and ε-Optimization

In this section we explore the complexity of finding near-optimal solutions if ε-
augmentation or ε-unit increment oracles are available. We need the assumption
that cj ≥ 0 for all j = 1, 2, . . . , n. We also fix ε > 0. Let UI(ε) denote the
variation of the algorithm UI where the oracle Unit-Inc is replaced by ε-Unit-
Inc which takes as input c + ej , an ε-optimal solution x0 of min{cx : x ∈ X},
an index j, and computes an ε-optimal solution x∗ of min{(c + ej)x : x ∈ X}.
Using arguments similar to that in the proof of Theorem 2 one can show the
following result.

Theorem 6. Given an ε-unit increment oracle and an initial feasible solution,
algorithm UI(ε) computes an ε-optimal solution to min{cx : x ∈ X} in oracle-
polynomial time.

Thus if a feasible solution can be computed in polynomial time and the ε-unit
increment problem can be solved in polynomial time, then an ε-optimal solution
can be obtained in polynomial time. Alternatively, an optimization problem
is not approximable if and only if the corresponding unit increment problem
is not approximable. This result is interesting in several ways. For example,
even if we have an ε-optimal solution to the traveling salesman problem, if one
of the edge weights is increased by one, then getting an ε-optimal solution is
still NP-hard. Also, there exists a (fully) polynomial-time approximation scheme
for an optimization problem if and only if there is a (fully) polynomial-time
approximation scheme for the unit increment problem.

Interestingly, we can show that the ε-augmentation problem and the ε-unit
increment problem are equivalent for 0/1-integer programs.

8 J.B. Orlin, A.P. Punnen, and A.S. Schulz

Theorem 7. For 0/1-integer programs, the ε-augmentation problem and the ε-
unit increment problem are polynomial-time equivalent.

Proof. Assume first that an ε-augmentation oracle and an ε-optimal solution x1

to min{cx : x ∈ X} are given. Consider an instance min{cx : x ∈ X} with
X ⊆ {0, 1}n and its j-th unit increment instance min{(c + ej)x : x ∈ X}. Let
x0 and x∗ be (unknown) optimal solutions of the former problem and the latter
problem, respectively.

If the ε-augmentation oracle declares that x1 is an ε-optimal solution to
min{(c + ej)x : x ∈ X}, we are done. Thus suppose that starting with the
solution x1 to min{(c + ej)x : x ∈ X} the ε-augmentation oracle produces an
improved solution, say x2. We will show that x2 is an ε-approximate solution to
min{(c+ ej)x : x ∈ X}. By Lemma 3 we have

(c+ ej)x∗ = cx0 or (c+ ej)x∗ = cx0 + 1. (2)

Since x1 is ε-optimal for min{cx : x ∈ X},

cx1 − cx0

cx0
≤ ε.

Case 1: x1
j = 1. In this case (c + ej)x1 = cx1 + 1. Since x2 is an improved

solution for min{(c + ej)x : x ∈ X} obtained from x1, (c + ej)x2 < (c + ej)x1

and hence
(c+ ej)x2 ≤ cx1.

From (2) we have (c+ ej)x∗ = cx0 or (c+ ej)x∗ = cx0 + 1. If (c+ ej)x∗ = cx0,
then

(c+ ej)x2 − (c+ ej)x∗

(c+ ej)x∗
≤ cx1 − cx0

cx0
≤ ε.

If (c+ ej)x∗ = cx0 + 1, then

(c+ ej)x2 − (c+ ej)x∗

(c+ ej)x∗
≤ cx1 − cx0 − 1

cx0 + 1
≤ cx1 − cx0

cx0
≤ ε.

Case 2: x1
j = 0. In this case (c + ej)x1 = cx1. We will show that x1 is an

ε-optimal solution to min{(c+ ej)x : x ∈ X}. If (c+ ej)x∗ = cx0, then

(c+ ej)x1 − (c+ ej)x∗

(c+ ej)x∗
=
cx1 − cx0

cx0
≤ ε.

If (c+ ej)x∗ = cx0 + 1 then,

(c+ ej)x1 − (c+ ej)x∗

(c+ ej)x∗
=
cx1 − cx0 − 1

cx0 + 1
≤ cx1 − cx0

cx0
≤ ε.

Thus if the ε-augmentation oracle does not declare x1 as ε-optimal, the improved
solution x2 is guaranteed to be ε-optimal for min{(c+ ej)x : x ∈ X}.

The converse of the theorem follows from Theorem 6. ut

Optimization and Evaluation are Equivalent 9

One consequence of the above theorem is that a 0/1-integer program has a
(fully) polynomial-time approximation scheme if and only if the corresponding
augmentation problem has a (fully) polynomial-time approximation scheme. The
same result was obtained by Orlin et al. using different arguments [11].

5 The Unit Increment Problem and Local Optimization

In this section we consider the complexity of computing a locally optimal so-
lution with respect to a given neighborhood function N . Recall that the local
augmentation problem has as input a feasible solution x and an objective func-
tion vector c, and it outputs a solution y ∈ N(x) with cy < cx, unless x is
already a local optimum. The local unit increment problem accepts as input an
index j and a locally optimal solution x0 with respect to c, and it returns a
locally optimal solution x∗ with respect to c+ ej .

As in the case of (global) optimization and ε-optimization, we first observe
that if a feasible solution can be obtained in polynomial time and the local unit
increment problem can be solved in polynomial time, then a local optimum can
be computed in polynomial time. To establish this, we simply modify algorithm
UI by replacing the unit increment oracle, Unit-Inc, with a local unit increment
oracle, Local-Unit-Inc. We call the resulting algorithm LUI.

Theorem 8. Given a Local-Unit-Inc oracle, algorithm LUI computes a lo-
cally optimal solution in oracle-polynomial time.

The proof of Theorem 8 is similar to that of Theorem 2. Theorem 8 establishes
that the complexity of finding a local optimum is captured by that of the local
unit increment problem.

Unlike the case of optimization and ε-optimization, we are not able to estab-
lish the equivalence of the local unit increment problem and the local augmen-
tation problem for 0/1-integer programs. In fact, if they are equivalent, then,
by Theorem 8, there is a polynomial-time algorithm for finding a local optimum
for any problem in PLS, including PLS-complete problems. In other words, this
would imply PLS = P. However, the two problems are equivalent if the neigh-
borhood is exact. This follows from Theorem 4. Interestingly, we can show that
this is also true for near-exact neighborhoods. Recall from the introduction that
a neighborhood is called near exact if the objective function value of any local
optimum is worse than that of at most a polynomial number of other feasible
solutions.

Theorem 9. For 0/1-integer programs with near-exact neighborhoods, a polyno-
mial-time algorithm for local augmentation implies a polynomial-time algorithm
for the local unit increment problem.

Proof. Let x0 be a locally optimal solution with respect to the near-exact neigh-
borhood N and the objective function vector c. As usual, X denotes the set of
feasible solutions.

10 J.B. Orlin, A.P. Punnen, and A.S. Schulz

Since N is near exact, there exists X∗ ⊆ X such that cx0 ≤ cx for all x ∈ X∗
and |X \X∗| ≤ f(|I|) for some polynomial f . Here, |I| is the size of the input.
By Lemma 3, (c+ej)(x0−x) ≤ 1 for all x ∈ X∗. Thus in one augmentation step,
starting from x0, we get a solution that is no worse than any solution in X∗ w.r.t
(c + ej). This solution may or may not be a local optimum with respect to N .
But outside X∗ there are only f(|I|) solutions and hence the local augmentation
oracle cannot be called more than f(|I|) additional times before reaching a local
optimum. ut

Corollary 10. If there exists a near-exact neighborhood for a PLS-complete op-
timization problem with linear objective function, then there is a polynomial-time
algorithm that finds a local optimum for all problems in PLS. That is, PLS = P.

However, near-exact neighborhoods are unlikely to exist, at least for the TSP [7].

Acknowledgements

This work was supported in part by ONR grant N00014-01208-1-0029.

References

1. Ahuja, R.K., T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, 1993.

2. Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and Approximation, Springer, 1999.

3. Chakravarti, N. and A.P.M. Wagelmans, Calculation of stability radii for combi-
natorial optimization problems, Operations Research Letters 23 (1998), 1–7.

4. Crescenzi, P. and R. Silvestri, Relative complexity of evaluating the optimum cost
and constructing the optimum for maximization problems, Information Processing
Letters 33 (1990), 221–226.

5. Fabrikant, A., C.H. Papadimitriou, and K. Talwar, The complexity of pure Nash
equilibria, Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, 2004, pp. 604–612.

6. Grötschel, M. and L. Lovász, Combinatorial optimization, Chapter 28 in R.L.
Graham, M. Grötschel, and L. Lovász (eds.): Handbook of Combinatorics, volume
2, Elsevier, 1995, pp. 1541–1597.

7. Gutin, G., A. Yeo, and A. Zverovitch, Exponential neighborhoods and domination
analysis for the TSP, Chapter 6 in G. Gutin and A.P. Punnen (eds.), The Traveling
Salesman Problem and Its Variations, Kluwer, 2002, pp. 223–256.

8. Johnson, D.S., The NP-completeness column: Finding needles in haystacks, ACM
Transactions on Algorithms 3 (2007).

9. Johnson, D.S., C.H. Papadimitriou, and M. Yannakakis, How easy is local search?,
Journal of Computer and System Sciences 37 (1988), 79–100.

10. Krentel, M.W., Structure in locally optimal solutions, in Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, Research Triangle Park,
NC, 1989, 216–221.

11. Orlin, J.B., A.P. Punnen, and A.S. Schulz, Approximate local search in combina-
torial optimization, SIAM Journal on Computing 33 (2004), 1201–1214.

Optimization and Evaluation are Equivalent 11

12. Papadimitriou, C.H. and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, 1982.

13. Ramaswamy, R. and N. Chakravarti, Complexity of determining exact tolerances
for min-sum and min-max combinatorial optimization problems, Working Paper
WPS-247/95, Indian Institute of Management, Calcutta, India, 1995.

14. Schäffer, A.A. and M. Yannakakis, Simple local search problems that are hard to
solve, SIAM Journal on Computing 20 (1991), 56–87.

15. Schrijver, A., Theory of Linear and Integer Programming, Wiley, 1986.
16. Schulz, A.S., On the relative complexity of 15 problems related to 0/1-integer

programming, Chapter 19 in W.J. Cook, L. Lovász, J. Vygen (eds.): Research
Trends in Combinatorial Optimization, Springer, Berlin, 2009, pp. 399–428.

17. Schulz, A.S., R. Weismantel, and G.M. Ziegler, 0/1-integer programming: Opti-
mization and augmentation are equivalent, Lecture Notes in Computer Science
979 (1995), 473–483.

18. van Hoesel, S. and A.P.M. Wagelmans, On the complexity of postoptimality anal-
ysis of 0/1 programs, Discrete Applied Mathematics 91 (1999), 251–263.

