1,100 research outputs found

    Aperiodicity in one-way Markov cycles and repeat times of large earthquakes in faults

    Full text link
    A common use of Markov Chains is the simulation of the seismic cycle in a fault, i.e. as a renewal model for the repetition of its characteristic earthquakes. This representation is consistent with Reid's elastic rebound theory. Here it is proved that in {\it any} one-way Markov cycle, the aperiodicity of the corresponding distribution of cycle lengths is always lower than one. This fact concurs with observations of large earthquakes in faults all over the world

    Study of variable stars in the MOA data base: long-period red variables in the Large Magellanic Cloud

    Get PDF
    One hundred and forty six long-period red variable stars in the Large Magellanic Cloud (LMC) from the three year MOA project database were analysed. A careful periodic analysis was performed on these stars and a catalogue of their magnitudes, colours, periods and amplitudes is presented. We convert our blue and red magnitudes to KK band values using 19 oxygen-rich stars. A group of red short-period stars separated from the Mira sequence has been found on a (log P, K) diagram. They are located at the short period side of the Mira sequence consistent with the work of Wood and Sebo (1996). There are two interpretations for such stars; a difference in pulsation mode or a difference in chemical composition. We investigated the properties of these stars together with their colour, amplitude and periodicity. We conclude that they have small amplitudes and less regular variability. They are likely to be higher mode pulsators. A large scatter has been also found on the long period side of the (log P, K) diagram. This is possibly a systematic spread given that the blue band of our photometric system covers both standard B and V bands and affects carbon-rich stars.Comment: 19 pages, 19 figures, accepted for publication in MNRA

    SKU classification: A literature review and conceptual framework

    Get PDF
    Purpose - Stock keeping unit (SKU) classifications are widely used in the field of production and operations management. Although many theoretical and practical examples of classifications exist, there are no overviews of the current literature, and general guidelines are lacking with respect to method selection for classifying SKUs. The purpose of this paper is to systematically synthesise the earlier work in this area, and to conceptualise and discuss the factors that influence the choice of a specific SKU classification. Design/methodology/approach - The paper structurally reviews existing contributions and synthesises these into a conceptual framework for SKU classification. Findings - How SKUs are classified depends on the classification aim, the context and the method that is chosen. In total, three main production and operations management aims were found: inventory management, forecasting and production strategy. Within the method three decisions are identified to come to a classification: the characteristics, the classification technique and the operationalisation of the classes. Research limitations/implications - Drawing on the literature survey, the authors conclude with a conceptual framework describing the factors that influence SKU classification. Further research could use this framework to develop guidelines for real-life applications. Practical implications Examples from a variety of industries and general directions are provided which managers could use to develop their own SKU classification. Originality/value - The paper aims to advance the literature on SKU classification from the level of individual examples to a conceptual level and provides directions on how to develop a SKU classification

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Maternal iodine status in a multi-ethnic UK birth cohort:Associations with child cognitive and educational development

    Get PDF
    Background: Maternal iodine requirements increase during pregnancy to supply thyroid hormones critical for fetal neurodevelopment. Iodine insufficiency may result in poorer cognitive or child educational outcomes but current evidence is sparse and inconsistent. Objectives: To quantify the association between maternal iodine status and child educational outcomes. Methods: Urinary iodine concentrations (UIC) and iodine/creatinine ratios (I:Cr) were measured in 6971 mothers at 26-28 weeks' gestation participating in the Born in Bradford cohort. Maternal iodine status was examined in relation to child school achievement (early years foundation stage (EYFS), phonics, and Key Stage 1 (KS1)), other learning outcomes, social and behavioural difficulties, and sensorimotor control in 5745 children aged 4-7 years. Results: Median (interquartile range) UIC was 76 µg/L (46, 120), and I:Cr was 83 µg/g (59, 121). Overall, there was no strong or consistent evidence to support associations between UIC or I:Cr and neurodevelopmental outcomes. For instance, predicted EYFS and phonics scores (primary outcomes) at the 25th vs 75th I:Cr percentiles (99% confidence intervals) were similar, with no evidence of associations: EYFS scores were 32 (99% CI 31, 33) and 33 (99% CI 32, 34), and phonics scores were 34 (99% CI 33, 35) and 35 (99% CI 34, 36), respectively. Conclusions: In the largest single study of its kind, there was little evidence of detrimental neurodevelopmental outcomes in children born to pregnant women with iodine insufficiency as defined by World Health Organization–outlined thresholds. Alternative functional biomarkers for iodine status in pregnancy and focused assessment of other health outcomes may provide additional insight.</p

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
    corecore