264 research outputs found
Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites
We investigate the possibility of preparing left-handed materials in metallic
magnetic granular composites. Based on the effective medium approximation, we
show that by incorporating metallic magnetic nanoparticles into an appropriate
insulating matrix and controlling the directions of magnetization of metallic
magnetic components and their volume fraction, it may be possible to prepare a
composite medium of low eddy current loss which is left-handed for
electromagnetic waves propagating in some special direction and polarization in
a frequency region near the ferromagnetic resonance frequency. This composite
may be easier to make on an industrial scale. In addition, its physical
properties may be easily tuned by rotating the magnetization locally.Comment: 5 figure
Interface modes of two-dimensional composite structures
The surface modes of a composite consisting of aligned metallic wires with
square cross sections are investigated, on the basis of photonic band structure
calculations. The effective long-wavelength dielectric response function is
computed, as a function of the filling fraction. The dependence of the optical
absorption on the shape of the wires and the polarization of light is
discussed, and the effect of sharp corners analyzed. The effect of the
interaction between the wires on the localization of surface plasmons is also
addressed.Comment: 12 pages, 4 figures, to appear in Surf. Sc
Cloud microphysical effects of turbulent mixing and entrainment
Turbulent mixing and entrainment at the boundary of a cloud is studied by
means of direct numerical simulations that couple the Eulerian description of
the turbulent velocity and water vapor fields with a Lagrangian ensemble of
cloud water droplets that can grow and shrink by condensation and evaporation,
respectively. The focus is on detailed analysis of the relaxation process of
the droplet ensemble during the entrainment of subsaturated air, in particular
the dependence on turbulence time scales, droplet number density, initial
droplet radius and particle inertia. We find that the droplet evolution during
the entrainment process is captured best by a phase relaxation time that is
based on the droplet number density with respect to the entire simulation
domain and the initial droplet radius. Even under conditions favoring
homogeneous mixing, the probability density function of supersaturation at
droplet locations exhibits initially strong negative skewness, consistent with
droplets near the cloud boundary being suddenly mixed into clear air, but
rapidly approaches a narrower, symmetric shape. The droplet size distribution,
which is initialized as perfectly monodisperse, broadens and also becomes
somewhat negatively skewed. Particle inertia and gravitational settling lead to
a more rapid initial evaporation, but ultimately only to slight depletion of
both tails of the droplet size distribution. The Reynolds number dependence of
the mixing process remained weak over the parameter range studied, most
probably due to the fact that the inhomogeneous mixing regime could not be
fully accessed when phase relaxation times based on global number density are
considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in
reduced quality), to appear in Theoretical Computational Fluid Dynamic
Electron energy loss and induced photon emission in photonic crystals
The interaction of a fast electron with a photonic crystal is investigated by
solving the Maxwell equations exactly for the external field provided by the
electron in the presence of the crystal. The energy loss is obtained from the
retarding force exerted on the electron by the induced electric field. The
features of the energy loss spectra are shown to be related to the photonic
band structure of the crystal. Two different regimes are discussed: for small
lattice constants relative to the wavelength of the associated electron
excitations , an effective medium theory can be used to describe the
material; however, for the photonic band structure plays an
important role. Special attention is paid to the frequency gap regions in the
latter case.Comment: 12 pages, 7 figure
Scattering of elastic waves by periodic arrays of spherical bodies
We develop a formalism for the calculation of the frequency band structure of
a phononic crystal consisting of non-overlapping elastic spheres, characterized
by Lam\'e coefficients which may be complex and frequency dependent, arranged
periodically in a host medium with different mass density and Lam\'e
coefficients. We view the crystal as a sequence of planes of spheres, parallel
to and having the two dimensional periodicity of a given crystallographic
plane, and obtain the complex band structure of the infinite crystal associated
with this plane. The method allows one to calculate, also, the transmission,
reflection, and absorption coefficients for an elastic wave (longitudinal or
transverse) incident, at any angle, on a slab of the crystal of finite
thickness. We demonstrate the efficiency of the method by applying it to a
specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press
A comparison of clinical outcomes, service satisfaction and well-being in people using acute day units and crisis resolution teams: cohort study in England
Background
For people in mental health crisis, acute day units (ADUs) provide daily structured sessions and peer support in non-residential settings, often as an addition or alternative to crisis resolution teams (CRTs). There is little recent evidence about outcomes for those using ADUs, particularly compared with those receiving CRT care alone.
Aims
We aimed to investigate readmission rates, satisfaction and well-being outcomes for people using ADUs and CRTs.
Method
We conducted a cohort study comparing readmission to acute mental healthcare during a 6-month period for ADU and CRT participants. Secondary outcomes included satisfaction (Client Satisfaction Questionnaire), well-being (Short Warwick–Edinburgh Mental Well-being Scale) and depression (Center for Epidemiologic Studies Depression Scale).
Results
We recruited 744 participants (ADU: n = 431, 58%; CRT: n = 312, 42%) across four National Health Service trusts/health regions. There was no statistically significant overall difference in readmissions: 21% of ADU participants and 23% of CRT participants were readmitted over 6 months (adjusted hazard ratio 0.78, 95% CI 0.54–1.14). However, readmission results varied substantially by setting. At follow-up, ADU participants had significantly higher Client Satisfaction Questionnaire scores (2.5, 95% CI 1.4–3.5, P < 0.001) and well-being scores (1.3, 95% CI 0.4–2.1, P = 0.004), and lower depression scores (−1.7, 95% CI −2.7 to −0.8, P < 0.001), than CRT participants.
Conclusions
Patients who accessed ADUs demonstrated better outcomes for satisfaction, well-being and depression, and no significant differences in risk of readmission, compared with those who only used CRTs. Given the positive outcomes for patients, and the fact that ADUs are inconsistently provided in the National Health Service, their value and place in the acute care pathway needs further consideration and research
Observing the First Stars and Black Holes
The high sensitivity of JWST will open a new window on the end of the
cosmological dark ages. Small stellar clusters, with a stellar mass of several
10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun
should be directly detectable out to redshift z=10, and individual supernovae
(SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible
beyond this redshift. Dense primordial gas, in the process of collapsing from
large scales to form protogalaxies, may also be possible to image through
diffuse recombination line emission, possibly even before stars or BHs are
formed. In this article, I discuss the key physical processes that are expected
to have determined the sizes of the first star-clusters and black holes, and
the prospect of studying these objects by direct detections with JWST and with
other instruments. The direct light emitted by the very first stellar clusters
and intermediate-mass black holes at z>10 will likely fall below JWST's
detection threshold. However, JWST could reveal a decline at the faint-end of
the high-redshift luminosity function, and thereby shed light on radiative and
other feedback effects that operate at these early epochs. JWST will also have
the sensitivity to detect individual SNe from beyond z=10. In a dedicated
survey lasting for several weeks, thousands of SNe could be detected at z>6,
with a redshift distribution extending to the formation of the very first stars
at z>15. Using these SNe as tracers may be the only method to map out the
earliest stages of the cosmic star-formation history. Finally, we point out
that studying the earliest objects at high redshift will also offer a new
window on the primordial power spectrum, on 100 times smaller scales than
probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", Astrophysics & Space Science Library, Eds. H.
Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Hepatic triglyceride content is intricately associated with numerous metabolites and biochemical pathways
Background and Aims Non-alcoholic fatty liver disease (NAFLD) is characterized by the pathological accumulation of triglycerides in hepatocytes and is associated with insulin resistance, atherogenic dyslipidaemia and cardiometabolic diseases. Thus far, the extent of metabolic dysregulation associated with hepatic triglyceride accumulation has not been fully addressed. In this study, we aimed to identify metabolites associated with hepatic triglyceride content (HTGC) and map these associations using network analysis. Methods: To gain insight in the spectrum of metabolites associated with hepatic triglyceride accumulation, we performed a comprehensive plasma metabolomics screening of 1363 metabolites in apparently healthy middle aged (age 45-65) individuals (N = 496) in whom HTGC was measured by proton magnetic resonance spectroscopy. An atlas of metabolite-HTGC associations, based on univariate results, was created using correlation-based Gaussian graphical model (GGM) and genome scale metabolic model network analyses. Pathways associated with the clinical prognosis marker fibrosis 4 (FIB-4) index were tested using a closed global test. Results: Our analyses revealed that 118 metabolites were univariately associated with HTGC (p-value Metabolic health: pathophysiological trajectories and therap
Practicing Imperfect Forgiveness
Forgiveness is typically regarded as a good thing - even a virtue - but acts of forgiveness can vary widely in value, depending on their context and motivation. Faced with this variation, philosophers have tended to reinforce everyday concepts of forgiveness with strict sets of conditions, creating ideals or paradigms of forgiveness. These are meant to distinguish good or praiseworthy instances of forgiveness from problematic instances and, in particular, to protect the self-respect of would-be forgivers. But paradigmatic forgiveness is problematic for a number of reasons, including its inattention to forgiveness as a gendered trait. We can account for the values and the risks associated with forgiving far better if we treat it as a moral practice and not an ideal
- …