1,506 research outputs found

    Non-compact QED(3) coupled to a four-fermi interaction

    Full text link
    We present preliminary numerical results for the three dimensional non-compact QED with a weak four-fermion term in the lattice action. Approaches based on Schwinger-Dyson studies, arguments based on thermodynamic inequalities and numerical simulations lead to estimates of the critical number of fermion flavors (below which chiral symmetry is broken) ranging from Nfc=1N_{fc}=1 to Nfc=4N_{fc}=4. The weak four-fermion coupling provides the framework for an improved algorithm, which allows us to simulate the chiral limit of massless fermions and expose delicate effects.Comment: 3 pages, Contribution to Lattice2004(chiral), Fermilab, June 21-26, 200

    Shape Space Methods for Quantum Cosmological Triangleland

    Full text link
    With toy modelling of conceptual aspects of quantum cosmology and the problem of time in quantum gravity in mind, I study the classical and quantum dynamics of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do so by importing techniques to the triangle model from the corresponding 4 particles in 1-d model, using the fact that both have 2-spheres for shape spaces, though the latter has a trivial realization whilst the former has a more involved Hopf (or Dragt) type realization. I furthermore interpret the ensuing Dragt-type coordinates as shape quantities: a measure of anisoscelesness, the ellipticity of the base and apex's moments of inertia, and a quantity proportional to the area of the triangle. I promote these quantities at the quantum level to operators whose expectation and spread are then useful in understanding the quantum states of the system. Additionally, I tessellate the 2-sphere by its physical interpretation as the shape space of triangles, and then use this as a back-cloth from which to read off the interpretation of dynamical trajectories, potentials and wavefunctions. I include applications to timeless approaches to the problem of time and to the role of uniform states in quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process, and containing some new reference

    Potentially modifiable predictors of adverse neonatal and maternal outcomes in pregnancies with gestational diabetes mellitus: can they help for future risk stratification and risk-adapted patient care?

    Get PDF
    Gestational diabetes mellitus (GDM) exposes mothers and their offspring to short and long-term complications. The objective of this study was to identify the importance of potentially modifiable predictors of adverse outcomes in pregnancies with GDM. We also aimed to assess the relationship between maternal predictors and pregnancy outcomes depending on HbA1c values and to provide a risk stratification for adverse pregnancy outcomes according to the prepregnancy BMI (Body mass index) and HbA1c at the 1st booking. This prospective study included 576 patients with GDM. Predictors were prepregnancy BMI, gestational weight gain (GWG), excessive weight gain, fasting, 1 and 2-h glucose values after the 75 g oral glucose challenge test (oGTT), HbA1c at the 1st GDM booking and at the end of pregnancy and maternal treatment requirement. Maternal and neonatal outcomes such as cesarean section, macrosomia, large and small for gestational age (LGA, SGA), neonatal hypoglycemia, prematurity, hospitalization in the neonatal unit and Apgar score at 5 min < 7 were evaluated. Univariate and multivariate regression analyses and probability analyses were performed. One-hour glucose after oGTT and prepregnancy BMI were correlated with cesarean section. GWG and HbA1c at the end pregnancy were associated with macrosomia and LGA, while prepregnancy BMI was inversely associated with SGA. The requirement for maternal treatment was correlated with neonatal hypoglycemia, and HbA1c at the end of pregnancy with prematurity (all p < 0.05). The correlations between predictors and pregnancy complications were exclusively observed when HbA1c was ≥5.5% (37 mmol/mol). In women with prepregnancy BMI ≥ 25 kg/m <sup>2</sup> and HbA1c ≥ 5.5% (37 mmol/mol) at the 1st booking, the risk for cesarean section and LGA was nearly doubled compared to women with BMI with < 25 kg/m <sup>2</sup> and HbA1c < 5.5% (37 mmol/mol). Prepregnancy BMI, GWG, maternal treatment requirement and HbA1c at the end of pregnancy can predict adverse pregnancy outcomes in women with GDM, particularly when HbA1c is ≥5.5% (37 mmol/mol). Stratification based on prepregnancy BMI and HbA1c at the 1st booking may allow for future risk-adapted care in these patients

    Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature

    Full text link
    We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure

    Excitation Spectrum of One-dimensional Extended Ionic Hubbard Model

    Full text link
    We use Perturbative Continuous Unitary Transformations (PCUT) to study the one dimensional Extended Ionic Hubbard Model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, VV. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system. (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V=0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of VV there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion UU is to split singlet and triplet collective excitation branches, while VV tends to pull the singlet branches below the continuum to make them bound states.Comment: 10 eps figure

    Non-perturbative momentum dependence of the coupling constant and hadronic models

    Get PDF
    Models of hadron structure are associated with a hadronic scale which allows by perturbative evolution to calculate observables in the deep inelastic region. The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running coupling (effective charge) in the infrared, which is best understood as a dynamical generation of a gluon mass function, giving rise to a momentum dependence which is free from infrared divergences. We use this new development to understand why perturbative treatments are working reasonably well despite the smallness of the hadronic scale.Comment: Changes in Acknowledgments and PACS number

    Environmental Law Disrupted By COVID-19

    Get PDF
    For over a year, the COVID-19 pandemic and concerns about systemic racial injustice have highlighted the conflicts and opportunities currently faced by environmental law. Scientists uniformly predict that environmental degradation, notably climate change, will cause a rise in diseases, disproportionate suffering among communities already facing discrimination, and significant economic losses. In this Article, members of the Environmental Law Collaborative examine the legal system’s responses to these crises, with the goal of framing opportunities to reimagine environmental law. The Article is excerpted from their book Environmental Law, Disrupted, to be published by ELI Press later this year

    From Gapped Excitons to Gapless Triplons in One Dimension

    Full text link
    Often, exotic phases appear in the phase diagrams between conventional phases. Their elementary excitations are of particular interest. Here, we consider the example of the ionic Hubbard model in one dimension. This model is a band insulator (BI) for weak interaction and a Mott insulator (MI) for strong interaction. Inbetween, a spontaneously dimerized insulator (SDI) occurs which is governed by energetically low-lying charge and spin degrees of freedom. Applying a systematically controlled version of the continuous unitary transformations (CUTs) we are able to determine the dispersions of the elementary charge and spin excitations and of their most relevant bound states on equal footing. The key idea is to start from an externally dimerized system using the relative weak interdimer coupling as small expansion parameter which finally is set to unity to recover the original model.Comment: 18 pages, 10 figure

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
    corecore