25 research outputs found

    Simulating CCDs for the Chandra Advanced CCD Imaging Spectrometer

    Full text link
    We have implemented a Monte Carlo algorithm to model and predict the response of various kinds of CCDs to X-ray photons and minimally-ionizing particles and have applied this model to the CCDs in the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer. This algorithm draws on empirical results and predicts the response of all basic types of X-ray CCD devices. It relies on new solutions of the diffusion equation, including recombination, to predict the radial charge cloud distribution in field-free regions of CCDs. By adjusting the size of the charge clouds, we can reproduce the event grade distribution seen in calibration data. Using a model of the channel stops developed here and an insightful treatment of the insulating layer under the gate structure developed at MIT, we are able to reproduce all notable features in ACIS calibration spectra. The simulator is used to reproduce ground and flight calibration data from ACIS, thus confirming its fidelity. It can then be used for a variety of calibration tasks, such as generating spectral response matrices for spectral fitting of astrophysical sources, quantum efficiency estimation, and modeling of photon pile-up.Comment: 42 pages, 22 figures; accepted for publication in Nuclear Instruments and Methods in Physics Research, Section A; paper with high-quality figures can be found at ftp://ftp.astro.psu.edu/pub/townsley/simulator.p

    IMF biases created by binning and unresolved systems

    Full text link
    I discuss two of the possible sources of biases in the determination of the IMF: binning and the existence of unresolved components. The first source is important for clusters with a small number of stars detected in a given mass bin while the second one is relevant for all clusters located beyond the immediate solar neighborhood. For both cases I will present results of numerical simulations and I will discuss strategies to correct for their effects. I also present a brief description of a third unrelated bias source.Comment: 6 pages, 10 figures, to appear in "Young massive clusters, initial conditions and environments", typo in author's name correcte

    The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations

    Full text link
    We analyze the occurrence frequency distributions of peak fluxes PP, total fluxes EE, and durations TT of solar flares over the last three solar cycles (during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI. From the synthesized data we find powerlaw slopes with mean values of αP=1.72±0.08\alpha_P=1.72\pm0.08 for the peak flux, αE=1.60±0.14\alpha_E=1.60\pm0.14 for the total flux, and αT=1.98±0.35\alpha_T=1.98\pm0.35 for flare durations. We find a systematic anti-correlation of the powerlaw slope of peak fluxes as a function of the solar cycle, varying with an approximate sinusoidal variation αP(t)=α0+Δαcos[2π(tt0)/Tcycle]\alpha_P(t)=\alpha_0+\Delta \alpha \cos{[2\pi (t-t_0)/T_{cycle}]}, with a mean of α0=1.73\alpha_0=1.73, a variation of Δα=0.14\Delta \alpha =0.14, a solar cycle period Tcycle=12.6T_{cycle}=12.6 yrs, and a cycle minimum time t0=1984.1t_0=1984.1. The powerlaw slope is flattest during the maximum of a solar cycle, which indicates a higher magnetic complexity of the solar corona that leads to an overproportional rate of powerful flares.Comment: subm. to Solar Physic

    The Swift-XRT imaging Performances and Serendipitous Survey

    Get PDF
    We are exploiting thc Swift X-ray Telescope (XRT) deepest GR.B follow-up observations to study the cosmic X-Ray Background (XRB) population in the 0.2-10 keV energy band. We present some preliminary results of a serendipitous survey performed on 221 fields observed with exposure longer than 10 ks. We show that the XRT is a profitable instrument for surveys and that it is particularly suitable for the search and observation of ext,ended objects like clusters of galaxies. We used the brightest serendipitous sources and the longest observations to test. the XRT optics performance and the background characteristics all over the field of view, in different energy bands during the first 2.5 years of fully operational missions

    Swift follow-up of the Gravitational Wave source GW150914

    Get PDF
    The Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO) observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focused on nearby galaxies in the GW error region and covered 4.7 deg2 (~2 per cent of the probability in the rapidly available GW error region; 0.3 per cent of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical telescope data, and note the importance to electromagnetic follow-up of early notification of the progenitor details inferred from GW analysis

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
    corecore