650 research outputs found
Assessing reproducibility for radiographic measurement of leg length inequality after total hip replacement
Leg length inequality (LLI) as a result of total hip replacement can cause considerable morbidity. Although LLI was described when the technique was popularised in the 1960s, it remains a significant challenge to arthroplasty surgeons. This study reviews the established practice for the measurement of LLI on plain antero-posterior radiograph, and compares these techniques to two methods used locally. The radiographs of 35 patients were measured using four techniques. All four methods yielded an interclass correlation co-efficient of ≥0.90 for inter reader reliability. This study shows that the four methods are comparable for reliability, while a composite method, measuring from the centre of femoral rotation to the inferior teardrop and then to the lesser trochanter, has the added advantage of providing extra information on component position as well as an overall measure of LLI
The , interaction in finite volume and the resonance
In this work the interaction of the coupled channels and
in an SU(4) extrapolation of the chiral unitary theory, where the
resonance appears as dynamically generated from that
interaction, is extended to produce results in finite volume. Energy levels in
the finite box are evaluated and, assuming that they would correspond to
lattice results, the inverse problem of determining the phase shifts in the
infinite volume from the lattice results is solved. We observe that it is
possible to obtain accurate phase shifts and the position of the
resonance, but it requires the explicit consideration of the
two coupled channels. We also observe that some of the energy levels in the box
are attached to the closed channel, such that their use to induce the phase shifts via L\"uscher's formula leads to incorrect results.Comment: 10 pages, 13 figures, accepted for publication in Eur. Phys. J.
Penta-quark states with hidden charm and beauty
More and more hadron states are found to be difficult to be accommodated by
the quenched quark models which describe baryons as 3-quark states and mesons
as antiquark-quark states. Dragging out an antiquark-quark pair from the gluon
field in hadrons should be an important excitation mechanism for hadron
spectroscopy. Our recent progress on the penta-quark states with hidden charm
and beauty is reviewed.Comment: Plenary talk at the 5th Asia-Pacific Conference on Few-Body Problems
in Physics 2011 (APFB2011), 22-26 Aug., 2011, Seoul, Kore
A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon
From the time of CMB decoupling onwards we investigate cosmological evolution
subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale
eV (masquerading as the factor of the SM at
present). The viability of this postulate is discussed in view of cosmological
and (astro)particle physics bounds. The gauge theory is coupled to a spatially
homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by
Frieman et al., such an axion is a viable candidate for quintessence, i.e.
dynamical dark energy, being associated with today's cosmological acceleration.
A prediction of an upper limit for the duration of the
epoch stretching from the present to the point where the photon starts to be
Meissner massive is obtained: billion years.Comment: v3: consequences of an error in evolution equation for coupling
rectified, only a minimal change in physics results, two refs. adde
Experimental requirements for Grover's algorithm in optical quantum computation
The field of linear optical quantum computation (LOQC) will soon need a
repertoire of experimental milestones. We make progress in this direction by
describing several experiments based on Grover's algorithm. These experiments
range from a relatively simple implementation using only a single non-scalable
CNOT gate to the most complex, requiring two concatenated scalable CNOT gates,
and thus form a useful set of early milestones for LOQC. We also give a
complete description of basic LOQC using polarization-encoded qubits, making
use of many simplifications to the original scheme of Knill, Laflamme, and
Milburn.Comment: 9 pages, 8 figure
Charm and hidden charm scalar mesons in the nuclear medium
We study the renormalization of the properties of low lying charm and hidden
charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the
theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with
negligible width at zero density, the width becomes about 100 MeV at normal
nuclear matter density, while in the case of the X(3700) the width becomes as
large as 200 MeV. We discuss the origin of this new width and trace it to
reactions occurring in the nucleus, while offering a guideline for future
experiments testing these changes. We also show how those medium modifications
will bring valuable information on the nature of the scalar resonances and the
mechanisms of the interaction of D mesons with nucleons and nuclei
Removal of a single photon by adaptive absorption
We present a method to remove, using only linear optics, exactly one photon
from a field-mode. This is achieved by putting the system in contact with an
absorbing environment which is under continuous monitoring. A feedback
mechanism then decouples the system from the environment as soon as the first
photon is absorbed. We propose a possible scheme to implement this process and
provide the theoretical tools to describe it
Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons
The Effective Field Theory "without pions" at next-to-leading order is used
to analyze universal bound state and scattering properties of the 3- and
4-nucleon system. Results of a variety of phase shift equivalent nuclear
potentials are presented for bound state properties of 3H and 4He, and for the
singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are
performed with the Refined Resonating Group Method and include a full treatment
of the Coulomb interaction and the leading-order 3-nucleon interaction. The
results compare favorably with data and values from AV18(+UIX) model
calculations. A new correlation between a_0(3He-n) and the 3H binding energy is
found. Furthermore, we confirm at next-to-leading order the correlations,
already found at leading-order, between the 3H binding energy and the 3H charge
radius, and the Tjon line. With the 3H binding energy as input, we get
predictions of the Effective Field Theory "without pions" at next-to-leading
order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the
4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm
0.6)fm. Including the Coulomb interaction, the splitting in binding energy
between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data
of (0.10\mp 0.03) MeV is model independently attributed to higher order charge
independence breaking interactions. We also demonstrate that different results
for the same observable stem from higher order effects, and carefully assess
that numerical uncertainties are negligible. Our results demonstrate the
convergence and usefulness of the pion-less theory at next-to-leading order in
the 4He channel. We conclude that no 4-nucleon interaction is needed to
renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with
includegraphicx, leading-order results added, calculations include the LO
three-nucleon interaction explicitly, comment on Wigner bound added, minor
modification
I=3/2 Scattering in the Nonrelativisitic Quark Potential Model
We study elastic scattering to Born order using
nonrelativistic quark wavefunctions in a constituent-exchange model. This
channel is ideal for the study of nonresonant meson-meson scattering amplitudes
since s-channel resonances do not contribute significantly. Standard quark
model parameters yield good agreement with the measured S- and P-wave phase
shifts and with PCAC calculations of the scattering length. The P-wave phase
shift is especially interesting because it is nonzero solely due to
symmetry breaking effects, and is found to be in good agreement with experiment
given conventional values for the strange and nonstrange constituent quark
masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210
- …