View metadata, citation and similar papers at core.ac.uk

guant-ph/0306081 vl 11 Jun 2003

arXiv

<
brought to you by .{ CORE

provided by University of Queensland eSpace

Experimental requirements for Grover’s algorithm in optical quantum computation

Jennifer L. Dodd, 23l Timothy C. Ralph,»2 and G. J. Milburn®2

ICentre for Quantum Computer Technology, The University of Queensland, QLD 4072, Australia
2School of Physical Sciences, The University of Queensland, QLD 4072, Australia
I Institute for Quantum Information, California Institute of Technology, Pasadena CA 91125, USA
(Dated: June 11, 2003)

The field of linear optical quantum computation (LOQC) will soon need a repertoire of experi-
mental milestones. We make progress in this direction by describing several experiments based on
Grover’s algorithm. These experiments range from a relatively simple implementation using only a
single non-scalable CNOT gate to the most complex, requiring two concatenated scalable CNOT gates,
and thus form a useful set of early milestones for LOQC. We also give a complete description of
basic LOQC using polarization-encoded qubits, making use of many simplifications to the original

scheme of Knill, Laflamme, and Milburn ﬂ]

I. INTRODUCTION

In the next few years, we can expect to see demonstra-
tions of basic quantum gates in several implementations
of quantum computation. With this in sight, it is natural
to look ahead to what interesting quantum circuits can be
built out of a small number of one- and two-qubit gates
acting on a few qubits, as these circuits will provide mile-
stones on the way to full-scale quantum computation ﬂﬂ]

Grover’s search algorithm ﬂa, E] is a good candidate for
such a milestone. It is a quantum algorithm identifying
one of N elements, marked by an oracle, with order v N
uses of the oracle. When the search space consists of
4 elements, the algorithm is guaranteed to produce the
marked element after one use of the oracle, compared to
the 2.25 uses expected in a classical search. We will see
that it can be implemented using only 7 one-qubit gates
and 2 two-qubit gates, which makes it an excellent tar-
get once one- and two-qubit gates have been mastered.
Not surprisingly, it was one of the first algorithms to
be experimentally implemented in nuclear magnetic res-
onance quantum computing (Chuang, Gershenfeld, and
Kubinec [d] and Jones, Mosca, and Hansen [d]).

A promising quantum computing technology is the
linear optical quantum computation (LOQC) scheme of
Knill, Laflamme, and Milburn [1] (see Gottesman, Ki-
taev, and Preskill [d] for an alternative approach). In
this scheme, one-qubit gates are relatively straightfor-
ward. While implementing a scalable universal two-qubit
gate such as a CNOT remains a challenge, such a gate is
likely to be demonstrated in the next couple of years.
Already, a non-scalable ¢CNOT has been approximately
implemented by Pittman et al. [§]. For these reasons, it
is important to establish some specific LOQC milestones
on the path toward building a large quantum computer,
in the form of some simple algorithms on a few qubits.

This pursuit is dogged by conceptual difficulties asso-
ciated with quantum algorithms on a very small number
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of qubits, summed up in the question: What is the crite-
rion for “quantumness”? A reasonable criterion, partic-
ularly in the context of Grover’s algorithm, is to require
a “speed-up” over the best classical algorithm. However,
this notion can be hard to make sense of when the number
of steps is on the order of ten, rather than millions, and
the problem can easily be done by hand (not to mention
by a GHz classical processor). Furthermore, sometimes
the reduction in the number of steps can be achieved in
an implementation whose physical requirements grow ex-
ponentially with the number of qubits, trading off time
for space. The question of whether or not this counts as
“quantum” has received much attention (see, for exam-
ple, Kwiat et al. E], Bhattacharya, van den Heuvell, and
Spreeuw [1d]).

Perhaps the best solution to this problem is a prag-
matic one. In the quest to build a quantum computer
large enough to provide a genuine advantage over classi-
cal computers, two things must be achieved. First, a fine
level of quantum control must be demonstrated for both
single qubits and pairs of qubits. Second, it will be nec-
essary to show that the number of components (qubits
and gates) in a circuit can be increased without insur-
mountable increases in difficulty. In particular, we must
avoid exponential increases in the amount of resource us-
age (either time or space) — the implementation must
be scalable!.

Therefore, the importance of an experimental achieve-
ment of an early milestone (such as the four-element
Grover’s algorithm) should be measured primarily on
these criteria. A demonstration that Grover’s algorithm
finds the marked item in fewer steps than is possible with
a classical computer is an important goal, but it is less
important than the fine level of quantum control that
it implies. At this early stage of development of quan-
tum computers, any such demonstration is a significant
achievement, while a demonstration of such control in a
scalable manner is likely to be significantly more difficult

1 Blume-Kohout, Caves, and Deutsch ﬂ] give a general charac-
terization of the requirements for scalability.
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and consequently more impressive.

This is illustrated by the experiment of Kwiat et al. [9],
which demonstrated the ability to implement the search
algorithm in a quantum optical system, but using an
encoding that is not scalable — as they point out, the
number of optical elements that they require grows expo-
nentially in the number of qubits in their system. Thus,
although their techniques might be successfully extended
to a few qubits, they are not practical as the basis for an
approach to building a quantum computer.

In contrast, we are explicitly concerned with devel-
oping experimental milestones on the path toward full-
scale quantum computation in optical systems. We show
that Grover’s algorithm on four elements provides sev-
eral experiments that gradually increase in complexity.
The simplest version requires little more than a single,
coincidence-basis CNOT gate together with a source of
entangled photon pairs, while the most complex version
requires two scalable CNOT gates and six photons.

Before describing these experiments and their require-
ments, we give a brief description of Grover’s algorithm
(Section ) and LOQC (Section [). Since the orig-
inal proposal of LOQC, there have been many simpli-
fications and improvements to the scheme. We give a
concise description of the basics of LOQC making full
use of these simplifications, focusing on a variant of the
original scheme that uses polarization-encoded qubits. In
Sections [Vl and [Vl we describe and compare several opti-
cal circuits, all implementing Grover’s algorithm on four
elements. In Section [Vl we briefly discuss appropriate
figures of merit for Grover’s algorithm, and we conclude

in Section [V

II. GROVER’S ALGORITHM ON FOUR
ELEMENTS

Grover’s algorithm [3, 4] (see also Nielsen and
Chuang [12] for an elementary treatment on which much
of this section is based) is a quantum algorithm that can
speed up the solution to certain types of oracle-based
computations. We will say more about oracles and their
implementation after describing Grover’s algorithm.

A. Grover’s algorithm

Suppose our search space consists of N = 2™ elements,
of which one is a solution to a given problem. Grover’s
algorithm identifies the solution (with high probability)
using n + 1 qubits according to the following algorithm:

1. Prepare the state |0)®"|1).

2. Apply R®"+! where R = % [1 4] is the one-
qubit Hadamard gate. (We use the symbol R in-
stead of the usual H to avoid confusion with the

horizontal polarization state.)
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FIG. 1: A circuit diagram for the four-element Grover algo-
rithm, based on the figure in Box 6.1 of [12]. The top two
qubits are the data qubits, initialized in state |0)|0), while
the bottom qubit is the ancilla qubit, initialized in state |1).
The boxes labeled R and Z represent the one-qubit Hadamard
and Pauli oz gates, respectively. The CNOT is denoted by the
usual symbol, while the gray half-circles represent one-qubit
measurements in the computational basis, whose output ap-
pears on the classical output wires (double lines). The final X
gate represents the classical NOT required to put the output
into the correct form. The measurement always gives “1” on
the ancilla qubit, while the data qubits give “a” and “b”. It
is straightforward to show that, in principle, ab is the state
marked by the oracle.

3. Apply the oracle, which flips the ancilla qubit con-
ditional on the other qubits being in the state cor-
responding to the solution.

4. Apply R®n+1,

5. Apply a phase shift to the data qubits conditional
on not being in the state |0)®™, described by the
unitary operator 2|0)(0|®"—1I,, where I,, is the iden-
tity operation on the data qubits.

6. Apply R®™.

7. Repeat steps (3) to (6) a specified number of times,
then measure the qubits in the computational basis.

The number of repetitions (which is also the number of
uses of the oracle) that maximizes the probability of ob-
taining the correct answer is the nearest integer to

arccos/1/N
(N-1)/N

(1)

2 arccos

(Boyer et al. [13], see also [12]). This number is bounded
above by [mv/N /4], hence the claim that Grover’s algo-
rithm uses O(v/N) oracle calls, compared to the O(N)
oracle calls required in the classical case.

For the remainder of this paper, we restrict our at-
tention to the case where the number of elements in the
search space is N = 4. In that case, the number of rep-
etitions specified by Eq. [) is exactly one. A simplified
circuit based on the algorithm described above is shown
in Fig.[Ml It can be verified directly that this circuit, using
only one oracle call, gives the correct answer with proba-
bility 1, compared to the average of 2.25 oracle calls that
must be made with a classical circuit. For example, if
the solution is 10, then the output of the circuit is a =1
and b= 0.



FIG. 2: The circuit on the left shows the beginning of the
Grover circuit with an example oracle (inside the dashed box)
marking the item 10. We have implemented the oracle using
a variant of the Toffoli gate, where the state of the third
qubit is flipped when the first two qubits are in the state |10),
as indicated by the closed and open circles on the control
qubits. We have moved the measurement on the third qubit
forward since it plays no further role in the algorithm. In
the text, we show that this circuit is in fact equivalent to the
simplification on the right, where the Toffoli has been replaced
by a controlled-Z (CSIGN) operation followed by an X on the
appropriate qubit.

B. Implementing the oracle

An oracle is a quantum circuit that recognizes solutions
to a given problem. For example, suppose we wish to
solve a version of the traveling salesman problem, where
the goal is to find a route visiting a given collection of
cities that is shorter than some specified length L. Al-
though it is in general hard to find such a route, it is
easy to recognize whether a proposed route solves the
problem: simply add up the total distance the salesman
would travel on the proposed route, and compare it to L.

Specifically, an oracle is a circuit that, given an input
consisting of a potential solution to a problem, flips the
sign of an ancilla qubit if and only if the input is a solu-
tion to the problem. Since the only action of the oracle
is to recognize solutions, its internal structure is unim-
portant in a test of the algorithm itself. Thus, for our
purposes, the choice of oracle is arbitrary, and may be
chosen to be as simple as possible.

Although the internal workings of the oracle are unim-
portant for the purposes of testing the algorithm, the
complexity of implementing some oracle must be in-
cluded to characterize the difficulty of performing the ex-
periment. A simple implementation of an oracle marking
one of four states is a Toffoli gate, with the control qubits
negated where necessary to specify any of the states 00,
01, 10, or 11 (see the left-hand side of Fig.Bl for the ex-
ample where the marked state is 10).

If the marked state is 10, the action of the oracle on
the three qubits is to take the state (]00) + |01) + |10) +

[11))([0) = 1)) to

(100) +101) + [11))(|0) — [1)) + [10)(|1) — [0))

(2)

= (100) +[01) = [10) + [11))(|0) — [1))
(omitting the normalization). Thus the oracle simply has
the effect of flipping the sign of the marked state. The
ancilla is not used again, so it can be discarded at this

) D «p

FIG. 3: Inserting the simplified oracle of Fig. B into the
circuit of Fig. [l gives this circuit. Note that the marked state
is specified inside the oracle (the dashed box) by the values of
z1 and x2 used to determine whether or not the X gates are
applied. (Note that addition in the exponent of the X gates
is modulo 2.) Under ideal circumstances, the output of the
circuit is ¢ = x1 and b = z».

point.

Toffoli gates are difficult to implement in LOQC be-
cause there is no known way to implement one without
using several CNOTs. However, for our purposes, a full
Toffoli gate is not required because the ancilla qubit plays
such a limited role. The two-qubit circuit on the right-
hand side of Fig. B illustrates this for the case where the
marked state is 10. A single controlled-Z (CSIGN) gate
that flips the sign of the |11) state, followed by X gates
to move the minus sign to the appropriate state, has the
same action as the original oracle.

A simplified circuit to implement the four-element
Grover algorithm is given in Fig.Bl This is the circuit
that we will work with for the remainder of this paper.

III. LOQC WITH POLARIZATION ENCODING

In LOQC, qubits are encoded in dual rail logic [1I]:
Two modes A and B are used, and logical |0) and |1)
are encoded as |1) 4]0)p and |0)4|1) g, respectively. The
modes may represent two different spatial modes, or two
different polarization modes of a single spatial mode.?

In practice, it is likely that polarization-encoded qubits
will be used, so that logical |0) and |1) are encoded as |H)
and |V), respectively, where H and V refer to horizontal
and vertical polarization one-photon states of the same
spatial mode. The main reasons for this are (1) it signif-
icantly simplifies the implementation of the CNOT gate
(see below), (2) it allows one-qubit gates to be imple-
mented using only waveplates and phase delays rather
than beamsplitters and interferometers, and (3) it re-
duces the effects of noise by ensuring that, unlike with
spatial encoding, both states follow the same path on
the quantum wires between gates. In this section we de-
scribe in some detail the construction of one-qubit gates
and CNOTs in polarization-encoded LOQC.

2 A good introduction to LOQC in spatial encoding is pro-
vided by a set of lectures of Knill, available online at
http://online.itp.ucsb.edu/online/qinfo01/.


http://online.itp.ucsb.edu/online/qinfo01/

A. One-qubit gates

To our knowledge, no complete description of how to
implement basic quantum gates with polarization encod-
ing has been given in the literature, so we provide one
here. For one-qubit gates, waveplates and phase delays
are sufficient. A waveplate with slow axis |H’) and fast
axis |V') has action

/ i /
e M ®
V) =1V,
where ¢ is the resulting relative phase difference. Spe-
cial cases in common use are the half and quarter wave-
plates, with ¢ equal to half and a quarter of a wavelength,
respectively. Now suppose |H') is rotated counter-
clockwise (with respect to the direction of travel of the
light) by an angle « from |H). If the input state is
["] = h|H) + v|V), then the output is given by

2

(e’ —1)cosasina e?sin*a +cos?a | |v

e cos’a+sin*a (e’ —1)cosasin a] [h] )
Special cases of this transformation for common one-
qubit gates are set out in Table[ll The Hadamard and 7/8
gates, labeled R and T in the table, are a universal set
for one-qubit quantum computation (Boykin et al. [14]),
and so any one-qubit gate can be obtained by a sequence
of waveplates, although it is convenient to allow phase
delays as well. In the Grover circuit, the only one-qubit
gates used are the R, X, and Z gates, and thus we only
require half waveplates.

B. Two-qubit gates

Since the publication of the original LOQC scheme
of KLM [1l], many simplifications of their CSIGN gate
have been developed, with varying trade-offs between
simplicity and functionality. The different types may
be divided into two classes, those that are scalable and

Gate Optical element

€T = ¢ [} 9]|phase delay of —0

R= % [1 ]| waveplate with ¢ = 180°, a = —67.5°

T = [(1) e“(')/“] waveplate with ¢ = 45°, a = 90°

X =[%¢] waveplate with ¢ = 180°, a = —45°

Z = [(1) ,01] waveplate with ¢ = 180°, a = 90°

Y = [? Bi] 2 waveplates and a phase delay: (e"™/*1)XZ

TABLE I: Various one-qubit gates and their implementation
in polarization-encoded LOQC. a and ¢ refer to the angle of
the slow axis to the horizontal and the relative phase added
to light parallel to the slow axis, respectively. Note that T
requires a waveplate with a relative delay of one eighth of a
wavelength.

those that are not. In this section, we describe both
types. (Note that the CNOT and CSIGN gates are re-
lated by conjugation by Hadamards on the target bit, i.e.
CNOT = (I ® R)CSIGN(I ® R). Therefore, in the context
of LOQC where one-qubit gates are relatively straight-
forward, these two gates are practically equivalent, and
we will use the two almost interchangeably.)

1. Scalable two-qubit gates

The KLM scheme [1] has two properties that at
first appear contradictory: the LOQC CSIGN is non-
deterministic, but it is used to do computations in a scal-
able manner. The non-deterministic nature of the KLM
CSIGN is essential to engineer a two-photon interaction
without using highly nonlinear materials, but it poses a
problem: if its success probability is € < 1, then the suc-
cess probability of a circuit with n CSIGNs is € — it de-
creases exponentially with n. A solution to this problem
is the technique of gate teleportation described by Nielsen
and Chuang [16] and Gottesman and Chuang [17]. This
technique allows the gates to be prepared as an offline
resource, and then “teleported in” whenever required for
a computation. KLM showed that the teleportation step
can be made near-deterministic using a sufficiently large
number of repetitions. This technique is unlikely to be
used in early experiments, however, because the extra dif-
ficulty involved in teleporting gates will more than cancel
out the advantages of increasing the success probability
when the number of CSIGNS is small.

An essential feature required to make this work is that
it must be possible to determine when the gate has suc-
ceeded. The KLM ©ONOT has this property — although
it only succeeds 1 time in 16, whether or not it has suc-
ceeded is determined by the outcomes of measurements
on ancilla photons. We use the term scalable to describe
a CSIGN (or CNOT) that has the property that it is known
when it succeeds.

In this paper, we will not work directly with the KLM
CSIGN since there are simpler alternatives, such as the
closely related simplification proposed by Ralph et al. [17]
and the substantial modification proposed by Knill [1§].
There is also a promising alternative approach using en-
tangled ancillas discovered by Pittman, Jacobs and Fran-
son [19] that we will not consider further here. We focus
on the cSIGN of Ralph et al., shown in Fig. @3

3 Recent numerical work by Lund, Bell, and Ralph [20], shows that
the simplified KLM csIGN of [1f] is more resilient to detector and
ancilla inefficiencies than the other two, perhaps because it acts
symmetrically on the two qubits. For example, the fidelity of
this gate (calculated as the fidelity of the actual output with
the ideal output, minimized over input states) is larger than the
fidelities of the other two gates for detector efficiencies up to ap-
proximately 95%. However, it remains to be seen what effects
other sources of error, such as mode-matching errors, and imper-
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FIG. 4: The simplified KLM csIGN of [15]. The top rail contains the control qubit and the bottom rail contains the target qubit,
both encoded in the polarization of a single photon. A square with a diagonal line across it represents a polarizing beamsplitter.
By convention, we always assume that the horizontal polarization is 100% reflected while the vertical polarization is 100%
transmitted. So, for example, after the first polarizing beamsplitters, the topmost rail contains the horizontally polarized
component of the control qubit. A thin rectangle represents an ordinary beamsplitter, with a sign change for the mode
reflected from the thick black side and reflectivity given by the cosine of the angle written next to it. (If the input modes to a
beamsplitter are |a)in and |b)in, with the b mode receiving the sign change and with reflectivity given by cos z, then the outputs
are €os |a)out + sin z|b)ous and sin x|a)ous — cos z|b)out.) The circuit uses two vertically polarized ancilla photons. It succeeds
if the first two measurements both count 0 photons and the second two measurements both count 1 photon.
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FIG. 5: A further simplified (but still scalable) polarization-encoded KLM CSIGN. A gray rectangle containing “z°” represents a
half waveplate with slow axis at an angle of z° to the horizontal polarization. See Table[ll for the corresponding one-qubit gates.
This circuit works similarly to the previous one (Fig. H), but it takes fuller advantage of the orthogonality of the polarization
states. For a full description, see the text.

In fact, there is a further, substantial simplification to
this circuit that is achieved by making fuller use of the
polarization encoding, resulting in the circuit in Fig. B
This gate still requires two ancilla photons. However, it
uses fewer detectors, beamsplitters, and polarizing beam-
splitters, and eliminates two interferometers. Its effect on
qubit states is unchanged, up to an unimportant overall
phase of —1. If we denote the beamsplitter reflectivities
as 1 =5—3v2 and 1z = (3—v/2)/7 (which are approx-
imated as cos40.8° and cos76.9° in the diagram), then

fect beamsplitter reflectivities, will have on the relative merits of
each gate.

the action of the gate is the following:

00) — v/m72(2n2 — 1)[00) = —+/p|00)
[01) — 1 (3n3 — 2112)]01) = —/p|01)
[10) — v/mm2(2n2 — 1)|00) = —/p[10)
[11) — m2[11) = \/pl11)
where the success probability p is given by p = 2 = (11—
61/2)/49 =~ 0.05. Thus the gate works approximately 1

out of every 20 attempts. For the remainder of this paper,
we will refer to this gate simply as a “scalable CSIGN”.

(5)

2. Coincidence-basis two-qubit gates

An even simpler, but non-scalable CNOT was discov-
ered by Hofmann and Takeuchi [21] and Ralph et al. [22].
It succeeds 1 time in 9, but it only works in the coinci-
dence basis, i.e. when the results of the whole compu-
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FIG. 6: The coincidence-basis ¢NOT of [21, 22]. All three
beamsplitters have the same reflectivity 1/3 ~ cos54.7°. It
can be turned into a CSIGN by removing the two halfwave
plates. Note that it is not necessary to have detectors on the
reflected modes of the topmost and bottommost beamsplitters
(even though measuring a photon in either of these modes
would signal a failure), since other failures of this gate are
undetectable until the end of the computation. The gate has
worked if exactly one photon is found in each rail.

tation are selected to contain an allowed distribution of
photons among detectors. We call this a coincidence-
basis CNOT. See Fig. This circuit has been designed
so that if exactly one photon is measured in the top rail
(in either polarization), and one in the bottom rail, it has
worked with certainty. Otherwise, the result is discarded
and the experiment is repeated. It cannot in general be
followed by further two-qubit gates, as it is possible for
a later gate to mask a failure. Thus it cannot be used to
do scalable quantum computation.

The useful purpose served by this gate (as well as the
coincidence-basis gate of [§]) is as a simpler intermediate
step before the full complexity of a scalable cNOT. In a
general circuit, it may be possible to replace one or more
scalable ¢cNOTs with a coincidence-basis CNOT, thereby
significantly reducing the complexity of circuits contain-
ing a few cNOTs. In the following sections on construct-
ing optical circuits to perform the four-element Grover
algorithm, we will see some of these ideas in action.

IV. THE TWO-QUBIT GROVER IN LOQC

A simplified circuit for the four-element Grover algo-
rithm was given in Fig.B In Fig.[d this circuit is trans-
lated directly into an optical circuit, using the prescrip-
tions and circuits of the previous section.

The circuit, which succeeds one time in approximately
180 = 20 x 9 (the product of the number of attempts
per success for each CNOT), uses 10-12 half waveplates,

4 Note that the 90° and 67.5° halfwave plates cannot be combined
into a single waveplate: their product £ [1 ’1} has terms of

Vzll

opposite sign in the off-diagonal terms, while the waveplate equa-

5 beamsplitters (2 of which must be modematched),
9 polarizing beamsplitters (4 of which must be mode-
matched), 4 photons that must be simultaneously pro-
duced in desired polarization states, and 7 single-photon
detectors. The second CNOT can be done in the coinci-
dence basis since there are no interactions between the
two qubits following it. Therefore, if the final measure-
ment contains an allowed distribution of photons (exactly
one in the top two detectors and one in the bottom two
detectors), we know that the second CNOT worked, which
is sufficient for our purposes here.?

However, it is important to note that the output of this
circuit (before the measurement) could not be used to do
further calculations because of the uncertainty in the out-
come of the second CNOT. If, for example, there were two
photons in the top rail after the second CNOT, the sys-
tem’s state would no longer be in the “qubit space”. A
third ¢cNOT might bring the system back into the qubit
space, but it is unlikely to have performed the transfor-
mation we expected. In this case, the overall circuit fails,
but we have no way of detecting the failure (except to
compare with the answer that we can calculate by hand
for this simple case).

To ensure reliability for further calculations, the sec-
ond CNOT should be replaced by a scalable ¢cNOT. The
optical circuit for this case would work one time in 400,
and would contain on the order of 14-16 waveplates,
8 polarizing beamsplitters (6 of which would be mode-
matched), 4 ordinary beamsplitters (2 of which would
be modematched), 6 photons produced in desired polar-
ization states simultaneously, and 10 single-photon detec-
tors. This would be considerably more difficult to achieve
experimentally. Since we are (in principle) guaranteed to
be in the qubit space at the end of this circuit, the out-
put of each pair of detectors should contain exactly one
photon. Therefore, it is possible to simplify the final
detection process by simply blocking out one of the po-
larizations (horizontal, say), and then looking to see if a
photon is detected. This would reduce the number of po-
larizing beamsplitters to 6 and the number of detectors
to 8, at the cost of introducing two polarization filters.
However, in practice the number of photons at the out-
put will sometimes be incorrect. Thus, the increase in
simplicity would have to be weighed against the failures
that would go undetected.

tion (Eq. @)) has these entries equal.

5 A small but potentially useful simplification is to remove the
40.8° beamsplitter, as described in [2(]. They show that, until
detector and source efficiencies of up to approximately 99.5% are
reached, the fidelity of the gate can be substantially increased
by removing this beamsplitter and adjusting the reflectivity of
the 76.9° beamsplitter. Given that beamsplitter reflectivities
are imperfect, removing this beamsplitter is likely to decrease
that source of error, while also decreasing the complexity of the
circuit by removing a detector. There is a catch, however: the
probability of success decreases by a factor of 4-5 for efficiencies
of 80%—95%.



FIG. 7: An optical implementation of Grover’s algorithm on four elements based on the circuit in Fig. Bl The oracle part is
contained in the dashed box. This circuit is essentially the concatenation of the circuits for the scalable csiaN (Fig. H) and
the coincidence-basis cNOT (Fig. H), together with a few extra waveplates. The output of the circuit is discarded unless the
first measurement counts 0 photons, the second two measurements both count 1 photon, and one photon is found in each
pair of detectors at the end, i.e. ag + av = by + by = 1. Note that we have omitted the final correcting NOT gate on the
classical output in this diagram, but it should still be done. For example, if the oracle marks state 10, then the algorithm has

successfully identified the marked state if measurements return ag =1, ay =0, by = 1, by = 0.

V. SIMPLIFICATIONS

By far the most difficult aspect of the experiments just
described is implementing the scalable cSiGNs. However,
the CSIGN in the oracle is only used in a very restricted
way, and it turns out that we can replace it with a much
simpler circuit. Since only one input state is ever used,
namely (|H)+|V))(|H)+|V)), only one state is ever out-
put from the CSIGN, namely |HH)+|VH)+|HV)—|VV).
(We will continue to neglect normalization constants.) If
a source of entangled input states were available, then the
CSIGN could be replaced. In optics, such a source is in fact
readily available: a parametric down conversion source
can be used to produce the state |HH) + |VV), which
can be converted into our desired state by a Hadamard
gate on the first qubit, |H) — |H)+|V), |V) — |H)—|V).
Using this fact, a much simplified version of Grover’s al-
gorithm is presented in Fig.B

The simplicity of this circuit compared with the previ-
ous one is emphasized by comparing the number of com-
ponents. This circuit works one in every 9 attempts,
and requires 6—8 waveplates, 6 polarizing beamsplitters
(of which 2 must be modematched), 3 ordinary beam-
splitters (1 of which must be modematched), 2 photons
which are produced as the output of a parametric down-
conversion source, and 4 single-photon detectors.

What have we traded for this enormous gain in sim-
plicity? It turns out that we have compromised the ver-
satility of the algorithm. Most significantly, the oracle
is no longer easily replaceable. In principle, the oracle
should be a “’plug-in” component able to have many dif-
ferent forms corresponding to different potential prob-
lems. In this simplified scheme, however, we have ob-
scured the line between the oracle and non-oracle parts
of the circuit, making it difficult to see how to make the
circuit solve a problem using a different oracle. In Fig.B
a dashed box outlines the “oracle” part of the circuit for
comparison with the previous diagrams, but there is in
fact no clear line dividing the oracle from the earlier part
of the circuit.

This change affects how the circuit could be used. One
example is demonstrating the variation in the success
probability of Grover’s algorithm as a function of the
number repetitions of steps (3)—(6) described in Sec.[l
In the circuit in Fig.[d the oracle can be reused with some

small changes.® On the other hand, in Fig.® this is not

possible — the “oracle” can only be used once’.

VI. FIGURES OF MERIT

An important question that has so far not been ad-
dressed is what the appropriate figures of merit are for
this experiment. There are two related but distinct no-
tions of success here. The first is to what extent the
actual goal of Grover’s algorithm has been achieved, i.e.
how successfully the experiment distinguishes between
the four different oracles. The second is how similar the
actual operation of circuit is to the ideal operation. This
second notion is important for using these experiments
as tests of the ability to combine the basic elements of

6 The oracle on the right-hand side of Fig. Bl is designed to work
with inputs that are equal superpositions of computational basis
states. If the oracle is used twice in the same circuit, then it is
unlikely that the input state will always be the same. In order to
make the oracle work for an arbitrary input state, it is necessary
to simply duplicate the X gates following the CSIGN, before the
csIGN. For the example in Fig. Bl where the oracle marks the
state |01), the oracle should consist of the following: an X gate
acting on the bottom qubit, followed by the CSIGN, followed by
the X acting on the bottom qubit.

For a more speculative example, Grover’s algorithm can be used
to obtain upper bounds on an entanglement monotone called
the Groverian entanglement, as described by Biham, Osborne
and Nielsen [23]. The basic idea is that if an n-qubit state p
(possibly mixed) is used as input rather than [0)®™, the square
root of 1 minus the success probability gives a good measure of
the entanglement of p. This application requires input states
with varying degrees of entanglement, and thus is not possible
in the simplified circuit.
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FIG. 8: Grover’s algorithm using a parametric down conversion input. This circuit works similarly to the previous one, but
the oracle is no longer demarcated from the initial part of the circuit. The dashed box in this figure now contains both the
oracle and the initialization to the state |HH) 4 |V V). The advantage of this circuit is that it makes use of a natural source of
optical entanglement (parametric down conversion) to replace the very difficult scalable cSIGN. The outputs from this circuit
are accepted under the same conditions as the previous circuit (ag + av = by + by = 1), and the final classical NOT has again

been omitted.

quantum computation. It is clearly related to the first
— if the experiment cannot reliably distinguish between
the oracles, then the actual behavior of the circuit must
be very far from the ideal operation.

In order to be able to compare experiments (and also
to optimize the performance of a particular experimen-
tal setup), we need to be more precise about how to
measure the success of these experiments. We suggest
calculating figures of merit reflecting each of the two no-
tions of success described above. The first is simply to
measure the distinguishability of the distribution of mea-
surement results output by the circuit for different ora-
cles. For example, suppose that for the oracle marking
the state 00, the results 00, 01, 10, and 11 occur with
probabilities pgg = {0.9,0.04,0.02,0.04}, while the cor-
responding results when the oracle marks state 10 are
p1o = {0.01,0.08,0.8,0.11}. A simple indicator of the
distinguishability of these two distributions is their fi-
delity

F(poo; p1o) = Z Vpoo(z)p1o(x) (6)

where x ranges over the measurement outcomes
00, ...,11 and pgp(z) is the probabilities of obtaining re-
sult x given that the oracle marked state ab. This quan-
tity has the property that it is 1 precisely when the two
distributions are identical and 0 precisely when the two
distributions are non-overlapping, that is, when the set
of results for which the first distribution is non-zero has
no elements in common with the set of results for which
the second distribution is non-zero.

In the context of Grover’s algorithm, it is desirable to
make the fidelity between the distributions arising from
each pair of oracles as large as possible. (For an intro-
duction to the fidelity, see, for example, [12, 24]. The re-
lationship of the fidelity to distinguishability is explored
in Wootters [25] and [24].)

The second figure of merit is related to the similar-
ity of the actual operation implemented £ to the desired

unitary U. U is obtained by simply multiplying together
the circuit elements in Fig. Bl £, on the other hand, must
be determined experimentally. Ideally, £ should be de-
termined precisely using a method such as quantum pro-
cess tomography (Chuang and Nielsen [26] and Poyatos,
Cirac, and Zoller [21]). Although process tomography
can be done using only product-state inputs and one-
qubit measurements, it requires an enormous number of
runs of the experiment since the output states resulting
from 16 different input density matrices must be deter-
mined via quantum state tomography.

A less stringent, but much more easily calculated, cri-
terion is that the probability distributions for each oracle
should be close to the ideal distributions. Again, it is de-
sirable to have the fidelity of the actual distribution to
the ideal distribution for each oracle as close to 1 as pos-
sible.?

VII. A HIERARCHY OF EXPERIMENTS

This collection of different implementations of the
same algorithm could be used as the basis for a series of
experiments, each building on the last, each more compli-
cated than the last, each demonstrating improved quan-
tum control. For example, once a basic coincidence-basis
CNOT is working, it would be relatively simple to add
a small number of waveplates and a source of entangled
photons to do the circuit in Fig.B Once a scalable cNOT
is achieved, these two different CNOT circuits could be
combined to do the more complicated implementation
of Grover’s algorithm in Fig.[l demonstrating the abil-

8 Knill et al. 2] have a useful discussion of these issues where
they advocate the entanglement fidlelity to measure the quality
of an experimental implementation of the five-qubit code. They
describe a simple way of measuring the entanglement fidelity that
could be easily generalized to the setting of Grover’s algorithm.



ity to combine a scalable CNOT with further non-trivial
quantum computations. Finally, in the more distant fu-
ture, the implementation using two scalable CNOTs would
make a good testing ground for techniques for combining
LOQC components.
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