1,069 research outputs found

    Assessment of the environmental impacts of ASR schemes.

    Get PDF
    This report describes the results of modelling studies undertaken to assess the impacts of ASR on the local environment. Understanding and quantifying these impacts, in relation to other existing or proposed schemes, will be vital in the development, and subsequent licensing of any ASR scheme. As each individual scheme has its own hydrogeological and environmental setting, as well as operational requirements, an all-encompassing model cannot be prescribed. Rather, a set of models, of increasing complexity, have been run for ‘typical’ scenarios to illustrate their use and limitations. They are designed to act as screening tools to assist practitioners, at all stages of an investigation, to decide on the suitability of a site and to identify what additional data are required in order to proceed to the next stage. The models are appended to the report so practitioners can apply them to their specific site, as appropriate

    Efficient Refocussing of One Spin and Two Spin Interactions for NMR Quantum Computation

    Get PDF
    The use of spin echoes to refocus one spin interactions (chemical shifts) and two spin interactions (spin-spin couplings) plays a central role in both conventional NMR experiments and NMR quantum computation. Here we describe schemes for efficient refocussing of such interactions in both fully and partially coupled spin systems.Comment: 4 pages, RevTeX, including 4 LaTeX figure

    The promise and challenges of cell therapy for psoriasis*

    Get PDF
    The management of moderate-to-severe psoriasis has been transformed by the introduction of biological therapies. These medicines, particularly those targeting interleukin (IL)-17 and IL-23p19, can offer clear or nearly clear skin for the majority of patients with psoriasis, with good long-term drug survival. However, as currently used, none of these therapies is curative and disconcertingly there is a small but increasing number of patients with severe psoriasis who have failed all currently available therapeutic modalities. A similar scenario has occurred in other immune-mediated inflammatory diseases (IMIDs) where treatment options are limited in severely affected patients. In these cases, cell therapy, including haematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cells (MSC), has been utilized. This review discusses the various forms of cell therapy currently available, their utility in the management of IMIDs and emerging evidence for efficacy in severe psoriasis that is unresponsive to biological therapy. Balancing the risks and benefits of treatment vs. the underlying disease is key; cell therapy carries significant risks, costs, regulation and other complexities, which must be justified by outcomes. Although HSCT has anecdotally been reported to benefit severe psoriasis, sometimes with apparent cure, this has mainly been in the setting of other coincidental ‘routine’ indications. In psoriasis, cell therapies, such as MSC and regulatory T cells, with a lower risk of complications are likely to be more appropriate. Well-designed controlled trials coupled with mechanistic studies are warranted if advanced cell therapies are to be developed and delivered as a realistic option for severe psoriasis

    The promise and challenges of cell therapy for psoriasis

    Get PDF
    From Wiley via Jisc Publications RouterHistory: accepted 2021-05-18, pub-electronic 2021-07-27Article version: VoRPublication status: PublishedFunder: NIHR Manchester Biomedical Research Centre; Id: http://dx.doi.org/10.13039/100014653Summary: The management of moderate‐to‐severe psoriasis has been transformed by the introduction of biological therapies. These medicines, particularly those targeting interleukin (IL)‐17 and IL‐23p19, can offer clear or nearly clear skin for the majority of patients with psoriasis, with good long‐term drug survival. However, as currently used, none of these therapies is curative and disconcertingly there is a small but increasing number of patients with severe psoriasis who have failed all currently available therapeutic modalities. A similar scenario has occurred in other immune‐mediated inflammatory diseases (IMIDs) where treatment options are limited in severely affected patients. In these cases, cell therapy, including haematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cells (MSC), has been utilized. This review discusses the various forms of cell therapy currently available, their utility in the management of IMIDs and emerging evidence for efficacy in severe psoriasis that is unresponsive to biological therapy. Balancing the risks and benefits of treatment vs. the underlying disease is key; cell therapy carries significant risks, costs, regulation and other complexities, which must be justified by outcomes. Although HSCT has anecdotally been reported to benefit severe psoriasis, sometimes with apparent cure, this has mainly been in the setting of other coincidental ‘routine’ indications. In psoriasis, cell therapies, such as MSC and regulatory T cells, with a lower risk of complications are likely to be more appropriate. Well‐designed controlled trials coupled with mechanistic studies are warranted if advanced cell therapies are to be developed and delivered as a realistic option for severe psoriasis

    Large extra dimensions, the galaxy power spectrum and the end of inflation

    Get PDF
    We consider the production of gravitational KK modes via cosmological photon-photon and electron-positron annihilation in models with large factorisable extra dimensions. We place constraints on this production using recent results from a joint analysis of the power spectra of the 2dF Galaxy Redshift Survey (2dFGS) and the cosmic microwave background (CMB) anisotropies. We obtain a more accurate upper limit for the temperature corresponding to matter-radiation equality and show that, even for the case of 6 extra dimensions and a fundamental scale of 1 TeV, a period of inflation is required that ends at a temperature much lower than that of the QCD phase transition.Comment: 12 pages, 2 figures, hadronic branching+typos corrected,accepted in JHE

    Survival of, and competition between, oligodendrocytes expressing different alleles of the Plp gene

    Get PDF
    Mutations in the X-linked Plp gene lead to dysmyelinating phenotypes and oligodendrocyte cell death. Here, we exploit the X inactivation phenomenon to show that a hierarchy exists in the influence of different mutant Plp alleles on oligodendrocyte survival. We used compound heterozygote mice to study the long-term fate of oligodendrocytes expressing either the jimpy or rumpshaker allele against a background of cells expressing a Plp-null allele. Although mutant and null oligodendrocytes were generated in equal numbers, the proportion expressing the mutant allele subsequently declined, but whereas those expressing the rumpshaker allele formed a reduced but stable population, the number of jimpy cells fell progressively. The age of decline in the jimpy cells in different regions of the CNS correlated with the temporal sequence of myelination. In compound heterozygotes expressing rumpshaker and jimpy alleles, oligodendrocytes expressing the former predominated and were more abundant than when the rumpshaker and null alleles were in competition. Thus, oligodendrocyte survival is not determined solely by cell intrinsic factors, such as the conformation of the misfolded PLP, but is influenced by neighboring cells, possibly competing for cell survival factors

    Giant Magnons and Singular Curves

    Get PDF
    We obtain the giant magnon of Hofman-Maldacena and its dyonic generalisation on R x S^3 < AdS_5 x S^5 from the general elliptic finite-gap solution by degenerating its elliptic spectral curve into a singular curve. This alternate description of giant magnons as finite-gap solutions associated to singular curves is related through a symplectic transformation to their already established description in terms of condensate cuts developed in hep-th/0606145.Comment: 34 pages, 17 figures, minor change in abstrac

    Prediction of near field overpressure from quarry blasting

    Get PDF
    This paper investigates the propagation of airblast or pressure waves in air produced by bench blasting (i.e. detonation of the explosive in a row of blastholes, breaking the burden of rock towards the free vertical face of the block). Peak overpressure is calculated as a function of blasting parameters (explosive mass per delay and velocity at which the detonation sequence proceeds along the bench) and the polar coordinates of the position of interest (distance to the source and azimuth with respect to the free face). The model has been fitted to empirical data using linear least squares. The data set is composed of 122 airblast records monitored at distances less than 400 m in 41 production blasts carried out in two quarries. The model is statistically significant and has a determination coefficient of 0.87. The formula is validated from 12 airblast measurements gathered in five additional blasts
    corecore