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Summary

The management of moderate-to-severe psoriasis has been transformed by the
introduction of biological therapies. These medicines, particularly those targeting
interleukin (IL)-17 and IL-23p19, can offer clear or nearly clear skin for the
majority of patients with psoriasis, with good long-term drug survival. However,
as currently used, none of these therapies is curative and disconcertingly there is
a small but increasing number of patients with severe psoriasis who have failed
all currently available therapeutic modalities. A similar scenario has occurred in
other immune-mediated inflammatory diseases (IMIDs) where treatment options
are limited in severely affected patients. In these cases, cell therapy, including
haematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cells
(MSC), has been utilized. This review discusses the various forms of cell therapy
currently available, their utility in the management of IMIDs and emerging evi-
dence for efficacy in severe psoriasis that is unresponsive to biological therapy.
Balancing the risks and benefits of treatment vs. the underlying disease is key;
cell therapy carries significant risks, costs, regulation and other complexities,
which must be justified by outcomes. Although HSCT has anecdotally been
reported to benefit severe psoriasis, sometimes with apparent cure, this has
mainly been in the setting of other coincidental ‘routine’ indications. In psoriasis,
cell therapies, such as MSC and regulatory T cells, with a lower risk of complica-
tions are likely to be more appropriate. Well-designed controlled trials coupled
with mechanistic studies are warranted if advanced cell therapies are to be devel-
oped and delivered as a realistic option for severe psoriasis.

Introduction

Psoriasis is a common, immune-mediated inflammatory dis-

ease (IMID) with significant morbidity and detrimental impact

on the affected individual’s quality of life. It is associated with

important medical conditions, including psoriatic arthritis

(PsA), metabolic syndrome, depression and cardiovascular dis-

ease; people with psoriasis have a higher mortality than the

general population.1 The complex interplay between genetic,

epigenetic, immune and environmental factors that underlie

the disease pathogenesis is not fully understood.2 However,

the emergence of biological therapies targeting key immune

pathways in psoriasis pathogenesis, such as tumour necrosis

factor (TNF)-a, interleukin (IL)-17 and IL-23, has

revolutionized the treatment landscape of severe disease. These

therapies can lead to significant improvement in disease bur-

den and quality of life for people with psoriasis. However,

targeted therapies are not curative; their limitations include

lack of clinical response in certain individuals, diminishing

efficacy over time and occasional significant adverse effects.3

Consequently, there is an increasing number of patients with

psoriasis who are refractory to multiple lines of biological and

nonbiological systemic therapies. This underscores an urgent

and increasing need for more advanced, perhaps curative,

treatment options including nonpharmaceutical approaches for

severe psoriasis.

Cell therapy comprises the use of somatic cells (stem, pro-

genitor or primary cells) isolated from either the affected
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individual (autologous) or a donor (allogeneic) to treat the

underlying disease. The various types of somatic cells that are

used, or have the potential to be used, as cell therapy in IMIDs

include haematopoietic stem cells (HSCs), mesenchymal stem

or stromal cells (MSCs), multilineage-differentiating stress-

enduring (Muse) cells, fibroblasts, induced pluripotent stem

cells (iPSCs), regulatory T cells (Tregs) and chimeric antigen

receptor (CAR)-T cells. The last two decades have witnessed

rapid advances in clinical trials and commercialization of cell

therapy, for which the three most common disease indications

in Europe between 2004 and 2014 were cancer, cardiovascu-

lar disease and connective tissue diseases.4 Observations of

serendipitous ‘transfer’ and ‘cure’ of IMIDs after HSC trans-

plantation (HSCT) have raised interest in the potential of cell

therapy as an option for these conditions with a number of

controlled and open studies mainly in multiple sclerosis (MS),

musculoskeletal disease and systemic sclerosis (SS). Similar

observations of ‘transfer’ and ‘cure’ have been made for psori-

asis over the years, but there are few subsequent hypothesis-

testing studies. Thus, there appears to be a rationale and an

impetus to explore the use of cell therapy in psoriasis, specifi-

cally for patients who are refractory to currently available

therapies.

This review discusses the following three key aspects of cell

therapy: (i) types of cell therapy for IMIDs; (ii) accumulated

data on the use of cell therapy in the management of psoria-

sis; and (iii) the future direction of cell therapy for psoriasis.

Types of cell therapy

The various types of cell therapy that have been used, or have

the potential to be used, in IMIDs are detailed in Figure 1.

Types of cell therapy used for immune-mediated

inflammatory diseases

Haematopoietic stem cell transplantation

HSCT is used to treat a wide range of malignant and nonma-

lignant conditions.5 It involves intravenous infusion of allo-

geneic or autologous HSCs following myeloablative and/or

lymphoablative cytotoxic therapy. The preparative ‘condition-

ing’ regimen may include various combinations of high-dose

chemotherapy, total body irradiation and ‘serotherapy’, such

as polyclonal antithymocyte globulin, or therapeutic mono-

clonal antibodies, e.g. alemtuzumab or rituximab. Sources of

HSCs include granulocyte colony-stimulating factor-mobilized

peripheral blood stem cells, bone marrow and umbilical cord

blood.6 Allogeneic HSCT requires ongoing immunosuppres-

sion, usually ciclosporin or tacrolimus, to facilitate engraft-

ment and prevent graft-versus-host disease (GVHD), until

tolerization occurs thereby enabling withdrawal. The overall

aim of HSCT is to remove the underlying disease process and

reconstitute the blood and immune systems, which in allo-

geneic HSCT may be accompanied by a graft-versus-tumour

reaction.

Over the last quarter century, autologous HSCT has been

increasingly used to treat individuals with IMIDs, including

MS, SS and other rheumatological diseases and Crohn disease

where, despite modern treatments, some patients have ongo-

ing poor disease control and potentially shortened life expec-

tancy. In these ‘difficult-to-treat’ patients, HSCT has been

explored as an intensive means of disease control, delivered as

a ‘one-off’ treatment with long-term effectiveness. In some

IMIDs, such as severe relapsing-remitting MS and SS, random-

ized controlled trials (RCTs) support sustained benefits of

HSCT, whereas in other IMIDs, there appears to be a resetting

of disease activity to controllable levels.

In highly active resistant relapsing-remitting MS, there has

been a single phase III RCT comparing autologous HSCT with

various standard-of-care disease-modifying therapies (DMTs).7

Among 110 patients randomized on a 1 : 1 basis, only three

patients had disease progression at 1 year as primary endpoint

vs. 34 patients in the DMT group. There was also significant

improvement of MS at one year and beyond without

treatment-related mortality (TRM).7

In severe SS, there has been one small phase I RCT8 and

two phase III RCTs, namely ‘SCOT’9 and ‘ASTIS’,10 each using

different transplant regimens but with similar control arms. In

the North American ‘SCOT’ trial, Kaplan–Meier estimates at

72 months of event-free survival were 74% vs. 47%, and for

overall survival were 86% vs. 51%, for HSCT and control,

respectively.9 The TRM was 3% at 54 months and 6% at

72 months.9 These results confirmed similar findings from the

earlier European ‘ASTIS’ trial, which also showed significant

improvements in event-free and overall survival, with a TRM

of 10%.10

These phase III trial results in MS and SS support the poten-

tially powerful and prolonged effect of autologous HSCT on

disease activity in severely affected patients with IMIDs, but

also highlight the importance of careful patient selection.

Underlying vital organ compromise from the IMID itself man-

ifests in the contrasting TRM between different diseases and

requires careful per patient justification of the procedure.

Allogeneic HSCT has been applied to IMIDs more rarely

because of the higher complication rate (including GVHD) but

long-term responses, and probably cures, have been achieved

across a variety of diseases.11–14 Although autologous and allo-

geneic HSCT have been anecdotally reported to benefit severe

psoriasis, sometimes with apparent cure, this has mainly been

in the setting of other coincidental ‘routine’ indications

(Table 1). Very rare cases involving patients treated specifically

for severe PsA have been reported to the European Society for

Blood and Marrow Transplantation Registry.14

Mesenchymal stromal cells

MSCs comprise a heterogeneous population of self-renewable,

multipotent non-HSCs with immunomodulatory, angiogenic,

anti-inflammatory and antiapoptotic properties.15,16 These

properties, combined with ease of isolation from human tis-

sues and ability to evade allogeneic rejection (owing to lack of
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expression of major histocompatibility complex [MHC] class II

and costimulatory molecules CD80 and CD86, and low levels

of MHC class I),17,18 make MSCs an ideal cell therapy for vari-

ous conditions, including IMIDs, without the need for cyto-

toxic conditioning regimes.19

MSCs are found in virtually all organs but are predomi-

nantly harvested from bone marrow (BM-MSCs), umbilical

cord (UC-MSCs), placental tissues, Wharton’s jelly, peripheral

blood, dental pulp, skin and adipose tissue (ADSCs). Depend-

ing on the source of MSCs, their biological characteristics can

vary, including differentiation capacity, paracrine potential and

immunomodulatory properties. For instance, BM-MSCs and

ADSCs express stemness markers Sox2 and Oct4 in vitro, which

enable them to maintain their differentiation capacity in the

long term,20 whereas ADSCs, when compared with BM-MSCs

and UC-MSCs, exhibit a stronger inhibitory effect on

peripheral blood B cells, T cells and natural killer (NK) cells

in vitro;21 but all three types can promote Treg and T helper

(Th)1 polarization, evidenced by the increased expression of

forkhead box (FOX)P3 and T-bet mRNA within purified acti-

vated T cells, and a reduction in TNF-a and perforin produc-

tion by activated NK cells.21

In terms of immunomodulation, MSCs participate in both

innate and adaptive immunity; their immune regulatory func-

tions are exerted via interactions with immune cells through

cell-to-cell contact and paracrine activity involving T cells, B

cells, NK cells, macrophages, monocytes, dendritic cells and

neutrophils (reviewed in Gao et al.22 and Song et al.).23 The

MSC secretome, encapsulated in extracellular vesicles, includes

several cytokines, growth factors and chemokines, including

transforming growth factor (TGF)-b1, TNF-a, prostaglandin-

E2, interferon-c, fibroblast and hepatocyte growth factors,
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Figure 1 Types of cell therapy used, or with the potential to be used, in psoriasis. Cell therapy can be either allogeneic (cells from donor to

patient) or autologous (the patient’s own cells). Different types of somatic cells can be obtained from various tissues, isolated and expanded in

laboratories that meet Good Manufacturing Practice standards, and systemically administered to the patient at time of treatment. Fibroblasts and

Muse cells are isolated from dermis, whereas MSC can easily be isolated from adipose tissue or bone marrow. CAR-T; chimeric antigen receptor T;

iPSC, induced pluripotent stem cell; MSC, mesenchymal stromal or stem cell; Muse, multilineage-differentiating stress-enduring cells; Treg,

regulatory T cell.
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Table 1 Summary of published reports of cell therapy for psoriasis

Cell therapy Auto/Allo
Intravenous
cell dose

Primary
target
disease

Severity of
psoriasis at
baseline

Duration of
psoriasis
(years)

Previous treatment for
psoriasis PsA

Age
(years) Sex Adverse events Efficacy Reference

HSCT Allo Twice, 1 y
apart

AML Severe 20 PUVA, MTX, razoxane,
etretinate

No 36 M NS CR 4y 82

HSCT Allo N/A CML Severe 10 TCS, coal tar, dithranol Yes 35 M NS CR 1y 85

HSCT Allo N/A CML NS NS NS NS 35 M NS CR 4y 86

HSCT Allo N/A AA Severe 25 TCS, PUVA No 36 M cGVHD CR 1.8y 87

HSCT Allo N/A AML BSA 36% 1 TCS, etretinate No 40 M cGVHD CR 2y 88

HSCT Allo N/A CML BSA 19% NS NS Yes 54 M None CR 1y 89

HSCT Allo N/A CML BSA 66% 33 TCS, coal tar, PUVA, MTX NS 55 F aGVHD, cGVHD CR 2.4y 90

HSCT Allo N/A CML BSA 73% 8 PUVA, MTX Yes 38 M Mild GVHD DR 1m 91

HSCT Allo N/A NHL BSA 90% 25 TCS, coal tar, retinoids Yes 50 M None CR 17m 92

HSCT Allo N/A CML NS 20 TCS NS 49 M cGVHD CR 2.5y 93

HSCT Allo N/A AML Mod 21 TCS, TVD, OCS, PUVA NS 67 M GVHD DR 1.3m 94

HSCT Allo N/A AA Severe 16 NS Yes 29 M None DR 1y 82

HSCT Allo 2�1 9 108 per kg AA BSA 45% 2 TCS, TVD No 27 M None CR 10y 83

HSCT Allo N/A DLBCL BSA 10% NS NS No 56 M GVHD CR 2y 84

HSCT Allo N/A AML Mod NS TCS, TVD Yes 55 F aGVHD,
cGVHD,
death

CR from D37 to 1y 95

HSCT Allo N/A AML Mild-Mod NS TCS, TVD No 21 M aGVHD CR from D64 to 5y 7m 95

HSCT Allo N/A DLBCL Severe 15 MTX Yes 59 M None CR from D60 to 5y 95

HSCT Allo N/A AML Severe 20 TCS, TVD Yes 65 M aGVHD CR from D41 to 7y 5m 95

HSCT Allo N/A FL/DLBCL Mod 27 TCS, TVD No 30 F cGVHD CR from D30 to 3y 95

HSCT Allo N/A CNL Mod NS TCS, TVD No 65 M aGVHD,
cGVHD,
death

CR from D71 to 7m 95

HSCT Auto 24 9 106 per kg NHL Mild 15 TCS Yes 35 M NS DR 22m 96

HSCT Auto 2�85 9 108 per kg AML NS NS TCS, coal tar No 53 M NS DR 14m 96

HSCT Auto 4�7 9 106 per kg PCL Severe 13 PUVA No 40 F NS CR 6m; DR 8m 96

HSCT Auto 11�38 9 106 per kg MGUS BSA 36% 16 MTX, CIC, MMF, OCS Yes 34 M None DR 16m 97

HSCT Auto 0�42 9 106 per kg NHL Mod 20 NS No 50 M None DR 21m 83

HSCT Auto N/A MM BSA 50% 15 TCS, TVD, UVB Yes 35 M NS CR 15m 98

HSCT Auto N/A ES Severe
(Guttate
psoriasis)

NS NS No 9 M NS CR from
D20 to 15m

99

HSCT Auto N/A MM Mod-severe 20 MTX No 48 F None CR 13y; mild DR
thereafter

100

HSCT Auto Twice; M0, M7 MM Severe 25 TCS, PUVA, CIC,
MTX, USTE

No 54 M NS CR for 3y 101

(continued)
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Table 1 (continued)

Cell therapy Auto/Allo
Intravenous
cell dose

Primary
target
disease

Severity of
psoriasis at
baseline

Duration of
psoriasis
(years)

Previous treatment for
psoriasis PsA

Age
(years) Sex Adverse events Efficacy Reference

HSCT Auto N/A AL BSA > 50% 30 TCS No 58 M None CR for 7y 102

HSCT/UC-MSC Auto/Allo Twice/1 9 106

per kg (D0)
DLBCL NS 12 NS No 35 M Infections after

first HSCT
Psoriasis improved but
DR 6w after first HSCT;
CR 5y after UC-MSC

103

UC-MSC Allo 1 9 106 per kg
(W0, 1, 2, 5, 7)

Psoriasis NS 18 TCS No 26 F None CR 4y 103

ADSC Auto 0�5–3�1 9 106

per kg (D0, 40)
PSA PASI 21�6 29 TCS, MTX, ETA Yes 58 M None 58% reduction in PASI

(9�0); no improvement
in joint pain for 2y

104

ADSC Auto 0�5–3�1 9 106

per kg (D0, 30, 71)
Psoriasis PASI 24�0 5 TCS, TVD, MTX No 28 F None 65% reduction in PASI

(8�3) for 9.7m; transient
improvement in
onycholysis/pitting;
reduction
in TNF-a; 5 9 decrease
in ROS

104

G-MSC Allo 3 9 106 per kg
(W0, 1, 6, 7, 8)

Psoriasis Severe 5 MTX, ACI, CIC, ETA No 19 M None CR from W1 to 3y 105

ACI, acitretin; ADSC, adipose-derived mesenchymal stromal cells; aGVHD, acute graft-versus-host disease; AL, immunoglobulin light chain amyloidosis; Allo, allogeneic; AML, acute myeloid leukaemia;

Auto, autologous; BSA, body surface area; cGVHD, chronic graft-versus-host disease; CIC, ciclosporin; CML, chronic myeloid leukaemia; CNL, chronic neutrophilic leukaemia; CR, complete remission; D,

day; DLBCL, diffuse large B-cell lymphoma; DR, disease recurrence; ES, Ewing sarcoma; ETA, etanercept; FL, follicular lymphoma; G-MSC, gingival-derived mesenchymal stromal cells; HSCT, haematopoietic

stem cell transplantation; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; MMF, mycophenolate mofetil; MTX, methotrexate; NHL, non-Hodgkin lymphoma; OCS,

oral corticosteroids; PASI, Psoriasis Area and Severity Index; PCL, plasma cell leukaemia; PUVA, psoralen and ultraviolet A; PSA, psoriatic arthritis; ROS, reactive oxygen species; TCS, topical corticosteroids;

TNF, tumour necrosis factor; TVD, topical vitamin-D analogue; UC-MSC, umbilical cord-derived mesenchymal stromal cells; USTE, ustekinumab; UVB, ultraviolet B; W, week.
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indoleamine-pyrrole 2,3-dioxygenase and nitric oxide, among

others.24,25

One of the translational challenges with MSCs is their scala-

bility. In this regard, ADSCs are often preferred as they can be

obtained in large quantities from liposuction,26,27 with better

proliferative capacity, higher yield, slower rate of senescence

and better preservation of a normal diploid karyotype than

BM-MSCs.28–31

To date, safety and efficacy of MSCs have been demon-

strated in early phase trials in IMIDs, including rheumatoid

arthritis, systemic lupus erythematosus (SLE), lupus nephritis,

SS, GVHD, MS, type I diabetes mellitus, autoimmune hepatitis

and inflammatory bowel disease (IBD).32–39 Specifically, a

meta-analysis of 477 patients with Crohn disease fistulae

showed a significantly increased healing rate and a lower

recurrence rate in those with severe disease receiving allo-

geneic ADSCs compared with those who received dose-

adjusted BM-MSCs, with an optimal cell dose of 2–4 9 107

cells mL�1, indicating the considerable potential of MSCs for

the treatment of IBD.40 A recent phase II RCT of autologous

MSCs in 48 patients with MS demonstrated disease remission,

without safety issues, in 58�6% compared with 9�7% in a

sham-treatment group.39 However, most of the MSC-based tri-

als for IMIDs are still in early phase I or II clinical trials with

some promising results and no toxicity to date, but larger

controlled trials are needed to confirm their efficacy and long-

term safety.31,32,34,35,38,39 However, several MSC products

have been approved including Prochymal (Osiris Therapeutics,

Columbia, MD, USA) for acute GVHD in Canada and New

Zealand.22 One of the theoretical pitfalls of MSCs is risk of

carcinogenesis.17,41,42 Despite emerging knowledge and expe-

rience with clinical application of MSCs, the cell dose and fre-

quency of administration vary between trials and the optimal

dosing regimen has yet to be determined.

Regulatory T cells

Tregs regulate or suppress other immunocytes by controlling

response to self-antigens and nonself antigens, thus helping to

prevent autoimmunity and limit chronic inflammation. They

exert these functions through inhibitory cytokines (e.g. IL-

10), cytolysis (via granzyme A/B and perforin), metabolic dis-

ruption and modulation of dendritic cell maturation or func-

tion, and lymphocyte-activation gene-3 binding to MHC class

II molecules.43

Rapid progress in the clinical translation of adoptive cell

therapy of Tregs is underpinned by various preclinical models

of autoimmune diseases demonstrating the therapeutic poten-

tial of a unique FOXP3+ immunosuppressive subset of Tregs.

To date, there are more than 50 active and completed clinical

trials testing the safety and efficacy of Tregs for IMIDs includ-

ing pemphigus vulgaris, SLE, IBD, autoimmune hepatitis and

asthma.44,45 Published results indicate excellent safety profiles

and some efficacy in patients treated with as many as 2�5 bil-

lion Tregs. Although psoriasis is believed to represent an

imbalance between Th17 cells and Tregs, there are no studies

to ascertain whether Treg-based therapy can restore this bal-

ance.46 However, there are current challenges with the use of

Treg therapy for IMIDs, which include the variability in

expansion of Tregs ex vivo, the relative paucity of clinical grade

reagents required for the manufacture of Tregs for therapy

and the observation that tissue antigen-specific Tregs, although

more potent than polyclonal Tregs, are expressed in very low

numbers and are unstable. It may be that the opportunities

offered by synthetic biology, e.g. for CAR-T therapy, could be

harnessed for Treg therapy.44 Further investigation of the most

suitable Treg subset to use for a particular disease, and con-

trolled trials with larger sample size and a standardized dosing

regimen, are required to obtain robust evidence of the clinical

benefit of correcting breaks in immune tolerance in IMIDs.47

For further review of this topic please see Roth-Walter et al.48

Types of cell therapy with potential for use in immune-

mediated inflammatory diseases

There are a number of other forms of cell therapy that could

potentially be used in the treatment of psoriasis, although

these are not currently being tested in IMIDs. These include

fibroblasts, Muse cells, iPSCs and CAR-T cells.

Fibroblasts

Fibroblasts, which exhibit similar characteristics to MSCs with

immunomodulatory and regenerative properties through para-

crine effects, play a vital role in wound healing through depo-

sition of extracellular matrix and formation of scar tissue.49–53

Thus, fibroblasts can be considered as an alternative to MSCs

for immunomodulatory cell therapy.51 Both allogeneic and

autologous fibroblasts have been used for treatment of chronic

wounds including venous leg ulcers and recessive dystrophic

epidermolysis bullosa, with notable anti-inflammatory

effect.54–57 The main concern with fibroblast cell therapy is

the risk of fibrosis and hypertrophic scars.50 However, fibrob-

lasts from the papillary dermis have a particular therapeutic

relevance as they are involved in wound healing with anti-

inflammatory effects without fibrosis.58 Although fibroblasts

have not been tested in humans with IMIDs, their therapeutic

potential has been highlighted through a number of preclini-

cal studies using mouse models of IMIDs including type I dia-

betes, autoimmune arthritis, alopecia areata and MS.51,59–61

Multilineage-differentiating stress-enduring cells

Muse cells are pluripotent stem cells, occurring naturally in

tissues of mesenchymal origin, with regenerative, anti-

inflammatory, antiapoptotic, antifibrotic and immunomodula-

tory properties.62–64 They comprise 1–2% of BM-MSCs, 5% of

dermal fibroblasts and a small population in adipose tissue.65

Upon tissue injury, the alerting signal, sphingosine-1-

phosphate, induces mobilization of Muse cells to peripheral

blood, and subsequently to the site of damage.64 This is fol-

lowed by spontaneous differentiation into, and replenishment
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of, tissue-compatible cells for repair.64,66 Furthermore, Muse

cells have immunomodulatory properties, exerted via TGF-b1

and regulation of macrophages towards the M2-phenotype,

which make them an attractive therapeutic option for psoria-

sis.67,68 To date, Muse cells have been used clinically in the

context of an early phase trial in myocardial infarction,

demonstrating safety and efficacy.69

Inducible pluripotent stem cells

One of the main limitations of somatic cell-based therapy is

that the limited lifespan of differentiated cells after clinical

application inevitably leads to a decline in therapeutic efficacy

over time. One revolutionary technology provides a solution

to this issue – iPSCs can be produced from any somatic cell

(e.g. fibroblasts) using reprogramming factors (Oct-4, Sox-2,

Klf-4 and c-Myc) and can differentiate into specialized cell

types with indefinite expansion, thus resembling embryonic

stem cells.70–72 The fundamental concept in the use of iPSCs

as cell therapy is that they are differentiated into the desired

cell types, such as keratinocytes or Tregs, and then trans-

planted as tissue constructs or cell suspensions. Owing to their

unlimited self-renewal and differentiation potential, patient-

specific iPSCs can be genetically corrected and differentiated

into required somatic cell lineages and administered as an

autograft.72,73 Viral-mediated gene supplementation or gen-

ome editing using tools such as CRISPR/Cas9 can be applied

to iPSCs in their undifferentiated state to correct the underly-

ing molecular pathology. Although combined genome editing

and iPSC technology is used as cell therapy in various disease

models, clinical translation to humans is still limited to a nar-

row scope of indications. These comprise cardiovascular dis-

eases, neurological disorders, GVHD and ophthalmic diseases

such as age-related macular degeneration.74 Caution is needed

because if undifferentiated proliferating iPSCs are directly

administered, they can form malignant teratomas owing to

their highly proliferative nature and broad differentiation

potential.75 However, iPSCs hold huge promise as both a

regenerative and an immunomodulatory cell therapy for vari-

ous skin diseases.76

Chimeric antigen receptor-T cell therapy

CAR-T cells are derived by transferring genetically engineered

CAR fusion proteins via lentiviral or retroviral vectors into

autologous T cells. The CAR constructs usually comprise a

single-chain variable fragment antigen-recognition domain, a

transmembrane CD-3-derived T-cell activation domain and an

intracellular costimulatory domain, e.g. CD28. The CAR-T cells

recognize and kill antigen-bearing cells via cytokine release.

Before infusion, the recipient requires cytotoxic conditioning

therapy. CAR-T cell therapy has been used in the management

of haematological malignancies, especially B-cell lymphoma,

acute lymphoblastic leukaemia and myeloma,77 and is being

considered in the management of melanoma resistant to

checkpoint inhibitors.78 However, it carries a significant risk

of cytokine release syndrome and neurotoxicity in the short

term, and long-term immunodeficiency owing to depletion of

immune effectors.79

As they have the ability to achieve profound depletion of B

cells or other immune targets, genetically engineered T cells

have been considered in the context of IMIDs. In a recent pre-

clinical study to treat pemphigus vulgaris in a mouse model

of the disease, the results demonstrated selective reduction of

serum anti-Desmoglein (Dsg)3 antibody titres and improve-

ment in blistering, hair loss and histological acantholysis.80

These preclinical data have led to an early phase open-label

clinical trial of Dsg3-CAR-T therapy for patients with pemphi-

gus vulgaris (NCT04422912).80

Beneficial effects of cell therapy for psoriasis

Serendipity played an important role in determining our cur-

rent consideration of cell therapy as a viable option for

patients with refractory psoriasis. Eedy et al.81 reported on the

‘cure’ of severe intractable psoriasis in a 35-year-old man who

received an allogeneic HSCT from his unaffected brother for

acute myelomonocytic leukaemia. The recipient remained free

of psoriasis 5 years post-transplant. Although the mechanisms

underlying the efficacy of allogeneic HSCT in psoriasis remain

elusive, it is postulated that the immunosuppressive drugs and

immunoablation needed for the procedure deplete autoreactive

T cells while the transplant reconstitutes the immune system

with potentially nonreactive T-cell populations from a donor

without psoriasis. This postulation is supported by reports that

long-term (up to 20 years) complete resolution of psoriasis

has been described in patients who received allogeneic, rather

than autologous, HSCT.82–84 Interestingly, the presence of

GVHD seemed to be an indicator for long-term complete

remission of psoriasis in eight cases (Table 1),82–105 possibly

owing to a ‘graft-versus-autoimmunity’ effect with ongoing

inhibition or elimination of the host immunohaematopoietic

system.84,91 Indeed, many of the participants listed in Table 1

received immunosuppressive conditioning regimens and con-

comitant therapies, including methotrexate and ciclosporin,

which are key confounders to the therapeutic benefit of HSCT.

The opposite, i.e. ‘transfer’ of psoriasis, was reported by

Snowden and Heaton106 in a 40-year-old man with acute

myeloid leukaemia who received a syngeneic HSCT from his

phenotypically identical twin brother who had been affected

by severe psoriasis and PsA for 20 years. Within 10 days of

transplantation, the recipient developed psoriasis which

remained intractable. Psoriasis persisted, despite receiving a

second transplant from the same donor, in addition to the

development of PsA. This case indicates that cellular aspects of

psoriasis may be transmitted by adoptive transfer.

Conversely, autologous HSCT does not appear to be curative

for psoriasis; relapses are frequent and may occur more than

10 years after transplantation. To date, of the 11 patients with

psoriasis treated with autologous HSCT, five relapsed within

2 years after the transplantation and one relapsed after

13 years (Table 1).100 Notably, even though psoriasis relapses,
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Table 2 Ongoing clinical trials of cell therapy for psoriasis

Cell therapy
Auto/
Allo

Route of
delivery

Cell dose
(per kg) Dosing frequency

Trial
phase Study design

Age
(years)

Sample
size Primary outcome Follow-up Study location ClinicalTrials.gov ID

ADSC Allo IV 0�5 9 106 3 doses (W0, 4, 8) I/II OL 18–65 7 PASI and SAE
at W12

12 W Guangdong,
China

NCT03265613

ADSC Allo IV 2 9 106 5 doses (W0, 2, 4, 6, 8) I/II OL (+CPT) 18–65 5 PASI at W12 12 W Guangdong,
China

NCT03392311

ADSC Allo IV 2 9 106 5 doses (W0, 2, 4, 6, 8) II OL
(+CPT +CM01)

18–65 8 PASI at W12 12 W Guangdong,
China

NCT04275024

UC-MSC Allo SC 10, 50
or 100 9 106

Single dose (D0) I ROL 19–65 9–18 AEs, cytokines,
PASI and BSA
at W4

4 W Seoul, Korea NCT02918123

UC-MSC Allo IV 2 9 106 5 doses (W0, 2, 4, 6, 8) I/II OL 18–65 5 PASI at W12 12 W Guangdong,
China

NCT03745417

UC-MSC Allo IV 1 or 3 9 106 6 doses (W0, 1, 2, 3, 5, 7) I RCT (vs. MTX) 18–60 57 PASI 75 and
PGA 0/1 at W20

52 W Beijing, China NCT03424629

UC-MSC Allo IV 1�5–2
or 2�5–3 9 106

4 doses (W0, 2, 4, 6) I OL 18–65 12 PASI 75 and
PGA 0/1 at M6

6 M Hunan, China NCT03765957

ADSC, adipose-derived mesenchymal stromal cells; AE, adverse events. Auto, autologous; Allo, allogeneic; CM01, PSORI-CM01 (Chinese herbal medicine); CPT, calcipotriol; DLQI, Dermatology Life

Quality Index; IV, intravenous; M, month; MTX, methotrexate; OL, open-label; PASI, Psoriasis Area and Severity Index; RCT, randomized crossover trial; ROL, randomized open-label; SC, subcutaneous;

UC-MSC, umbilical cord-derived mesenchymal stromal cells; W, week.
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it appears to run a more benign, less clinically severe course

compared with the pretransplant state. Psoriasis remission after

autologous HSCT is attributed to the myelo- and lymphoabla-

tive effect of conditioning regimens and altered and slow

immunological reconstitution following transplantation.98

HSCT carries significant risks, costs and other complexities,

which must be justified by outcomes compared with alterna-

tive treatments. Risks are greater with allogeneic HSCT than

with autologous HSCT. In practice, individualized decisions

need to be made for each patient with respect to treatment

options for their disease. Severe intractable psoriasis is fre-

quently physically and psychologically debilitating and stan-

dard and novel treatments are not without side-effects.

However, the risk–benefit balance of allogeneic HSCT would

rarely be justified, even with the apparent potential for cure

(Table 1). Autologous HSCT has lower risks, which have been

acceptable in some IMIDs (such as MS and SS), but the out-

comes of ‘serendipitous’ treatment where psoriasis has coex-

isted with a standard indication for HSCT are, at best,

generally only supportive of temporary disease control.

Thus, MSC therapy may be a more attractive, more risk-

averse approach to cell therapy for psoriasis (Table 1). De

Jesus104 reported on two patients with intractable psoriasis,

one of whom had concomitant PsA, who received autologous

MSCs in the form of two to three infusions of liposuction-

derived ADSCs. A durable response with clinical benefit in the

form of a 50–60% reduction in Psoriasis Area and Severity

Index lasting between 157 and 292 days occurred, although

PsA was unresponsive. There were no concerning safety sig-

nals. Furthermore, even though there was an eventual relapse

of psoriasis, one patient responded to etanercept – a biologic

that had previously been ineffective for him – after MSC ther-

apy, thereby indicating that MSCs could be used as adjunctive

therapy. Chen et al.103 commented on two cases. The first case

was a 35-year-old man with diffuse large B-cell lymphoma

(DLBCL) and concomitant psoriasis who was treated with

autologous HSCT on two occasions; psoriasis improved briefly

both times after the conditioning regimen before relapsing.

The transplants were unsuccessful in controlling the DLBCL.

The patient then received one infusion of UC-MSCs as adjunc-

tive therapy. Both lymphoma and psoriasis remitted and

remained in remittance for at least 5 years. The second case

involved a 26-year-old woman who had intractable psoriasis

for 18 years. Three infusions of UC-MSCs were given specifi-

cally for the treatment of psoriasis, which produced clearance

that was maintained for at least 4 years with two further infu-

sions. UC-MSCs appear to be safe and seem to have remittive

potential in these cases. Chen et al.107 explored the mechanism

of action of UC-MSCs for psoriasis using the imiquimod

mouse model and infusion of human UC-MSCs which signifi-

cantly reduced psoriasis severity. A key feature of the response

was reduced production of type I interferon by plasmacytoid

dendritic cells. Wang et al.105 used five infusions of allogeneic

gingival MSCs, which have immunomodulatory and anti-

inflammatory properties, to treat a 19-year-old man who had

severe plaque psoriasis refractory to systemic therapy.

Clearance of psoriasis occurred after the fifth infusion and the

patient remained clear of psoriasis three years later.

These encouraging observations of the effectiveness and rel-

ative safety of MSCs in the treatment of psoriasis have led to

seven current phase I–II clinical trials (six in China and one in

South Korea; three using ADSCs and four using UC-MSCs, all

allogeneic) (Table 2).

Conclusions and future directions

As the number of people with psoriasis refractory to current

biological and nonbiological systemic therapies continues to

rise, and the pipeline for new pharmacological approaches to

the disease starts to shrink, it is important to turn to novel

holistic approaches and advanced therapeutics for a cure. Amid

all the interest in advanced therapeutics, it should be noted

that cell therapy is not necessarily the only option available

for the management, although perhaps not cure, of severe

psoriasis. Stratified medicine offering a targeted proactive

approach to the management of psoriasis, coupled with life-

style modification and ideally early temporal intervention in

the disease pathway, could also offer long-term remission.

Of the three therapeutic strategies for IMIDs, namely small

molecules, biologics and advanced cell therapy, only the latter

offers the potential to fulfil the remit of a cure. However, in

psoriasis there are important issues relating to risk–benefit bal-

ance, costs and complexity of treatment, including significant

regulatory issues where ‘cells’ are considered along similar

pathways to drugs. Cell therapy in the form of MSCs may

offer an attractive and safer option in psoriasis. At the same

time, other forms of cell therapy such as Tregs, fibroblasts,

Muse cells and iPSCs should be considered as alternative devel-

opmental approaches. Any decision to use cell therapy in the

management of psoriasis must be a joint one, made with close

collaboration between transplant haematologists and/or other

experts in cell therapy and clinicians experienced in the man-

agement of severe psoriasis. Beyond individual compassionate

use of MSCs, there is a pressing need for controlled trials of

their use in the management of refractory psoriasis, ideally

coupled with mechanistic studies to define mode of action.
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