162 research outputs found

    Reducing stomatal density in barley improves drought tolerance without impacting on yield.

    Get PDF
    The epidermal patterning factor (EPF) family of secreted signalling peptides regulate the frequency of stomatal development in model dicot and basal land plant species. Here we identify and manipulate the expression of a barley ortholog and demonstrate that when overexpressed HvEPF1 limits entry to, and progression through, the stomatal development pathway. Despite substantial reductions in leaf gas exchange, barley plants with approximately half of the normal number of stomata show no reductions in grain yield. In addition, HvEPF1OE barley lines exhibit significantly enhanced water use efficiency, drought tolerance and soil water conservation properties. Our results demonstrate the potential of manipulating stomatal frequency for the protection and optimisation of cereal crop yields under future drier environments

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    From Coherent Modes to Turbulence and Granulation of Trapped Gases

    Full text link
    The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose-Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.Comment: Latex file, 25 pages, 4 figure

    Global research priorities for sea turtles : informing management and conservation in the 21st century

    Get PDF
    Over the past 3 decades, the status of sea turtles and the need for their protection to aid population recovery have increasingly captured the interest of government agencies, non-governmental organisations (NGOs) and the general public worldwide. This interest has been matched by increased research attention, focusing on a wide variety of topics relating to sea turtle biology and ecology, together with the interrelations of sea turtles with the physical and natural environments. Although sea turtles have been better studied than most other marine fauna, management actions and their evaluation are often hindered by the lack of data on turtle biology, human–turtle interactions, turtle population status and threats. In an effort to inform effective sea turtle conservation a list of priority research questions was assembled based on the opinions of 35 sea turtle researchers from 13 nations working in fields related to turtle biology and/or conservation. The combined experience of the contributing researchers spanned the globe as well as many relevant disciplines involved in conservation research. An initial list of more than 200 questions gathered from respondents was condensed into 20 metaquestions and classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Spectra over complex terrain in the surface layer

    No full text
    For design and control of Wind Energy Conversion Systems (WECS), the spectral distribution of wind speeds over frequencies needs to be known as well as velocity variances. Velocity spectra and other velocity statistics are estimated over three types of complex terrain: on tops of hills or escarpments; on land a short distance downwind from a water body; and over rolling farm land. The most important characteristics of turbulence models over uniform terrain are summarized briefly. Theoretical aspects of spectral characteristics over complex terrain are discussed, followed by detailed observations over complex terrain and procedures for their estimation. A theory is presented for calculation of response of engineering systems to wind fluctuations. (LEW

    Hydrostatic vertical velocity and incompressibility in the northern hemisphere

    No full text
    The vertical velocity w is evaluated for the Northern Hemisphere from reanalysis data and two forms of the Richardson equation. This equation is based on the hydrostatic assumption and the thermodynamic energy equation. The standard form of the Richardson equation allows one to quantify the contributions to the vertical velocity of the horizontal divergenc
    corecore