73 research outputs found

    Problems With Complex Actions

    Get PDF
    We consider Euclidean functional integrals involving actions which are not exclusively real. This situation arises, for example, when there are tt-odd terms in the the Minkowski action. Writing the action in terms of only real fields (which is always possible), such terms appear as explicitly imaginary terms in the Euclidean action. The usual quanization procedure which involves finding the critical points of the action and then quantizing the spectrum of fluctuations about these critical points fails. In the case of complex actions, there do not exist, in general, any critical points of the action on the space of real fields, the critical points are in general complex. The proper definition of the function integral then requires the analytic continuation of the functional integration into the space of complex fields so as to pass through the complex critical points according to the method of steepest descent. We show a simple example where this procedure can be carried out explicitly. The procedure of finding the critical points of the real part of the action and quantizing the corresponding fluctuations, treating the (exponential of the) complex part of the action as a bounded integrable function is shown to fail in our explicit example, at least perturbatively.Comment: 6+epsilon pages, no figures, presented at Theory CANADA

    Quantum Phase Transitions and Conserved Charges

    Full text link
    The constraints on the scaling properties of conserved charge densities in the vicinity of a zero temperature (TT), second-order quantum phase transition are studied. We introduce a generalized Wilson ratio, characterizing the non-linear response to an external field, HH, coupling to any conserved charge, and argue that it is a completely universal function of H/TH/T: this is illustrated by computations on model systems. We also note implications for transitions where the order parameter is a conserved charge (as in a T=0T=0 ferromagnet-paramagnet transition).Comment: 19 pages, REVTEX 3.0, 8 uuencoded Postscript figues appended, YCTP-xxx

    The Gross-Neveu Model from String Theory

    Get PDF
    We study an intersecting D-brane model which at low energies describes (1+1)-dimensional chiral fermions localized at defects on a stack of N_c D4-branes. Fermions at different defects interact via exchange of massless (4+1)-dimensional fields. At weak coupling this interaction gives rise to the Gross-Neveu (GN) model and can be studied using field theoretic techniques. At strong coupling one can describe the system in terms of probe branes propagating in a curved background in string theory. The chiral symmetry is dynamically broken at zero temperature and is restored above a critical temperature T_c which depends on the coupling. The phase transition at T_c is first order at strong coupling and second order at weak coupling.Comment: 32 pages, harvmac (b

    Pressure-Induced Magnetism and Hidden Order in URu_2Si_2

    Full text link
    We discuss the discovery of pressure-induced antiferromagnetism in URu_2Si_2, in the context of neutron, NMR and \mu SR results. The identification of a critical pressure separating mean-field and Ising phase transitions leads us to propose that the system lies close to a bicritical point associated with magnetic and (non-magnetic) hidden order. We conclude that the recent observation of an isotropic, field-independent component in the silicon NMR line-width implies that the hidden order parameter breaks time-reversal invariance and present a preliminary discussion of the underlying nature of the hidden order parameter.Comment: To appear in proceedings of SCES 200

    Effective theory for wall-antiwall system

    Full text link
    We propose a useful method for deriving the effective theory for a system where BPS and anti-BPS domain walls coexist. Our method respects an approximately preserved SUSY near each wall. Due to the finite width of the walls, SUSY breaking terms arise at tree-level, which are exponentially suppressed. A practical approximation using the BPS wall solutions is also discussed. We show that a tachyonic mode appears in the matter sector if the corresponding mode function has a broader profile than the wall width.Comment: LaTeX file, 30 page, 5 eps figures, references adde

    Spacetime Energy Decreases under World-sheet RG Flow

    Get PDF
    We study renormalization group flows in unitary two dimensional sigma models with asymptotically flat target spaces. Applying an infrared cutoff to the target space, we use the Zamolodchikov c-theorem to demonstrate that the target space ADM energy of the UV fixed point is greater than that of the IR fixed point: spacetime energy decreases under world-sheet RG flow. This result mirrors the well understood decrease of spacetime Bondi energy in the time evolution process of tachyon condensation.Comment: 25 pages, 4 figures, harvma

    R-mediation of Dynamical Supersymmetry Breaking

    Get PDF
    We propose a simple scenario of the dynamical supersymmetry breaking in four dimensional supergravity theories. The supersymmetry breaking sector is assumed to be completely separated as a sequestered sector from the visible sector, except for the communication by the gravity and U(1)_R gauge interactions, and the supersymmetry breaking is mediated by the superconformal anomaly and U(1)_R gauge interaction. Supersymmetry is dynamically broken by the interplay between the non-perturbative effect of the gauge interaction and Fayet-Iliopoulos D-term of U(1)_R which necessarily exists in supergravity theories with gauged U(1)_R symmetry. We construct an explicit model which gives phenomenologically acceptable mass spectrum of superpartners with vanishing (or very small) cosmological constant.Comment: 12 pages, to be published in Phys. Rev.

    Cosmological Tracking Solutions

    Get PDF
    A substantial fraction of the energy density of the universe may consist of quintessence in the form of a slowly-rolling scalar field. Since the energy density of the scalar field generally decreases more slowly than the matter energy density, it appears that the ratio of the two densities must be set to a special, infinitesimal value in the early universe in order to have the two densities nearly coincide today. Recently, we introduced the notion of tracker fields to avoid this initial conditions problem. In the paper, we address the following questions: What is the general condition to have tracker fields? What is the relation between the matter energy density and the equation-of-state of the universe imposed by tracker solutions? And, can tracker solutions explain why quintessence is becoming important today rather than during the early universe

    Semiclassical relativistic strings in S^5 and long coherent operators in N=4 SYM theory

    Full text link
    We consider the low energy effective action corresponding to the 1-loop, planar, dilatation operator in the scalar sector of N=4 SU(N) SYM theory. For a general class of non-holomorphic ``long'' operators, of bare dimension L>>1, it is a sigma model action with 8-dimensional target space and agrees with a limit of the phase-space string sigma model action describing generic fast-moving strings in the S^5 part of AdS_5 x S^5. The limit of the string action is taken in a way that allows for a systematic expansion to higher orders in the effective coupling λ/L2\lambda/L^2. This extends previous work on rigid rotating strings in S^5 (dual to operators in the SU(3) sector of the dilatation operator) to the case when string oscillations or pulsations in S^5 are allowed. We establish a map between the profile of the leading order string solution and the structure of the corresponding coherent, ``locally BPS'', SYM scalar operator. As an application, we explicitly determine the form of the non-holomorphic operators dual to the pulsating strings. Using action--angle variables, we also directly compute the energy of pulsating solutions, simplifying previous treatments.Comment: LaTeX, 50 pages, 1 figure. v2: References added, minor corrections. 54 pages. v3: Few changes. One paragraph added at the end of section 3. 55 page

    Anomalous spectral weight in photoemission spectra of the hole doped Haldane chain Y2-xSrxBaNiO5

    Full text link
    In this paper, we present photoemission experiments on the hole doped Haldane chain compound Y2−xSrxBaNiO5Y_{2-x}Sr_xBaNiO_5. By using the photon energy dependence of the photoemission cross section, we identified the symmetry of the first ionisation states (d type). Hole doping in this system leads to a significant increase in the spectral weight at the top of the valence band without any change in the vicinity of the Fermi energy. This behavior, not observed in other charge transfer oxides at low doping level, could result from the inhomogeneous character of the doped system and from a Ni 3d-O 2p hybridization enhancement due to the shortening of the relevant Ni-O distance in the localized hole-doped regions.Comment: 5 pages, 4 figure
    • 

    corecore