24 research outputs found

    Dynamics Of Population Of A Four-level Atom Due To One- And Three-photon Processes

    Get PDF
    The Schrödinger equation in the rotating-wave approximation has been solved nonperturbatively to study the temporal behavior of the occupation probabilities of different levels of a four-level atom interacting with four arbitrarily intense laser fields, such that the frequency of one of them equals the sum of the other three. The three-photon-excitation population dynamics, which is already complex, is strongly modified by one-photon excitation and detunings. Under certain conditions the three-photon excitation traps the population in the state initially populated; the population starts flowing into other states when one-photon excitation is also operative. © 1984 The American Physical Society.2963264327

    Field Purification in the intensity-dependent Jaynes-Cummings model

    Full text link
    We have found that, in the intensity-dependent Jaynes-Cummings model, a field initially prepared in a statistical mixture of two coherent states, ∣α>|\alpha> and ∣−α>|-\alpha>, evolves toward a pure state. We have also shown that an even-coherent state turns periodically a into rotated odd-coherent state during the evolution.Comment: 14 pages, RevTex, 3 figures, accepted for publication in Physics Letters

    Implementation of a two-qubit controlled-U gate based on unconventional geometric phase with a constant gating time

    Get PDF
    We propose an alternative scheme to implement a two-qubits Controlled-U gate in the hybrid system atom-CCACCA (coupled cavities array). Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular transformation UU on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation.Comment: 4 pages, 1 figure, APS format, an extended version is in progress with some improvement

    Non-classical Effects Of The Interaction Between One Or More Atoms Coupled To A Ring Resonator

    No full text
    Understanding and applicability of phenomena involved in computing and quantum information. In this presentation, we discuss the quantum dynamics of a system comprising two atoms of two levels microtoroidal coupled to a resonator in different ways. In a first arrangement atoms are neighbors enough so that the dipolar interaction between them cannot be neglected. In a second situation is the generation of entanglement in the bad ring resonator regime", where one of the atoms is not resonant with the modes of the resonator nor interacts with another atom, it only works as a deformation of the ring resonator. We show that the entanglement between the two atoms is strongly dependent on the dipolar interaction between the atoms and we have found an enhancement of the entanglement correlated to the average number of thermal photons when the modes of resonator are prepared in a thermal states. We have observed that depending on the preparation of initial state may occur phenomenon of death rise tangling between atoms. Depending upon the intensity of the mean number of photons in the thermal field and the coupling between the atoms with the resonator is possible to generate maximum entanglement between atoms even in the regime of high temperature. © OSA 2016.Part F1-LAOP 2016Latin America Optics and Photonics Conference, LAOP 201622 August 2016 through 26 August 201613427

    Influence Of The Vibrational Modes In The Transmission Of Electronic States Of Trapped Ions In Different Coupled Cavities

    No full text
    In this paper, we present a system formed by two electromagnetic cavities coupled by an optical fibre, each one interacting with a trapped ion. In the carrier band, we observe the one-qubit state transfer between the internal state of the ions and how the transmission time can be influenced by the vibration motion of the ions. © 2011 IOP Publishing Ltd.4411Jané, E., Plenio, M.B., Jonathan, D., (2002) Phys. Rev., 65 (5), p. 050302Yamaguchi, F., Milman, P., Brune, M., Raimond, J.M., Haroche, S., (2002) Phys. Rev., 66 (1), p. 010302Cirac, J.I., Ekert, A.K., Huelga, S.F., MacChiavello, C., (1999) Phys. Rev., 59 (6), p. 4249Hartmann, M.J., Brando, F.G.S.L., Plenio, M.B., (2006) Nature Phys., 2 (12), p. 849Nohama, F.K., Roversi, J.A., (2007) J. Mod. Opt., 54 (8), p. 1139Serafini, A., Mancini, S., Bose, S., (2006) Phys. Rev. Lett., 96 (1), p. 010503Ogden, C.D., Irish, E.K., Kim, M.S., (2008) Phys. Rev., 78 (6), p. 063805Yabu-Uti, B.F.C., Nohama, F.K., Roversi, J.A., (2008) Int. J. Quantum Inf., 6 (5), p. 1021Solomon, G.S., Pelton, M., Yamamoto, Y., (2001) Phys. Rev. Lett., 86 (17), p. 3903Vahala, K.J., Optical microcavities (2003) Nature, 424 (6950), p. 839Yao, W., Liu, R.-B., Sham, L.J., (2005) Phys. Rev. Lett., 95 (3), p. 030504Cirac, J.I., Zoller, P., (2000) Nature, 404 (6778), p. 579Leibfried, D., Blatt, R., Monroe, C., Wineland, D., (2003) Rev. Mod. Phys., 75 (1), p. 281Blatt, R., Wineland, D., (2008) Nature, 453 (7198), p. 1008Maiwald, R., Leibfried, D., Britton, J., Bergquist, J.C., Leuchs, G., Wineland, D., (2009) Nature Phys., 5 (8), p. 551Semio, F.L., Vidiella Barranco, A., Roversi, J.A., (2001) Phys. Rev., 64 (2), p. 024305Semio, F.L., Vidiella Barranco, A., Roversi, J.A., (2002) Phys. Lett., 299 (5-6), p. 423Mundt, A.B., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R., (2002) Phys. Rev. Lett., 89 (10), p. 103001Nohama, F.K., Roversi, J.A., (2008) J. Phys. B: At. Mol. Opt. Phys., 41 (4), p. 045503Pellizzari, T., (1997) Phys. Rev. Lett., 79 (26), p. 5242Bennett, C.H., Divicenzo, D.P., Smolin, J.A., Wootters, W.K., (1996) Phys. Rev., 54 (5), p. 3824Nohama, F.K., Roversi, J.A., (2009) 32nd Encontro Nacional de Física da Matéria Condensada, , http://www.sbfisica.org.br/~enfmcNagerl, H.C., Roos, C.H., Leibfried, D., Rohde, H., Thalhammer, G., Eschner, J., Schmidt-Kaler, F., Blatt, R., (2000) Phys. Rev., 61 (2), p. 023405Carmichael, H.J., (1993) Lectures Notes in Physics: An Open System Approach to Quantum Optics, , (Berlin: Springer)Murao, M., Knigh, P.L., (1998) Phys. Rev., 58 (1), p. 663Budini, A.A., De Matos Filho, R.L., Zagury, N., (2002) Phys. Rev., 65 (4), p. 04140

    Two-qubit State Transfer Between Trapped Ions Using Electromagnetic Cavities Coupled By An Optical Fibre

    No full text
    In this paper, we study a system formed by two electromagnetic cavities coupled by an optical fibre, where each cavity interacts with a trapped ion. In this model we observe that it is possible to transmit two-qubit states from the ion in cavity 1 to the ion in cavity 2, both connected by an optical fibre. The mentioned states consist of vibration and internal degrees of freedom of the ions. The presence of a reservoir with temperature T = 0 is included in the model. Taking into account the presence of the reservoir, we conclude that the transmission is reliable even for dissipation rates observed in experiments. © 2008 IOP Publishing Ltd.414Steane, A., (1998) Rep. Prog. Phys., 61 (2), p. 117Bouwmeester, D., Ekert, A., Zeilinger, A., (2000) The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum ComputationLeibfried, D., Blatt, R., Monroe, C., Wineland, D., (2003) Rev. Mod. Phys., 75 (1), p. 281Semio, F.L., Vidiella-Barranco, A., Roversi, J.A., (2001) Phys. Rev., 64 (2), p. 024305Mundt, A.B., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R., (2002) Phys. Rev. Lett., 89 (10), p. 103001Mundt, A.B., Kreuter, A., Russo, C., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R., (2003) Appl. Phys., 76, p. 117Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K., (1993) Phys. Rev. Lett., 70 (13), p. 1895Cho, J., Lee, H.-W., (2004) Phys. Rev., 70 (3), p. 034305Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H., (1997) Phys. Rev. Lett., 78 (16), p. 3221Nohama, F.K., Roversi, J.A., (2007) J. Mod. Opt., 54 (7-9), p. 1139Serafini, A., Stefano, M., Sougato, B., (2006) Phys. Rev. Lett., 96 (1), p. 010503Parkins, A.S., Kimble, H.J., (1999) J. Opt. B: Quantum. Semiclass. Optics, 1, p. 496Fleischhauer, M., Yelin, S.F., Lukin, M.D., (2000) Opt. Commun., 179 (1-6), p. 395Yao, W., Liu, R.-B., Sham, L.J., (2005) J. Opt. B: Quantum. Semiclass. Optics, 7, p. 318Yao, W., Liu, R.-B., Sham, L.J., (2005) Phys. Rev. Lett., 95 (3), p. 030504Cirac, J.I., Zoller, P., (2000) Nature, 404 (6778), p. 579Semio, F.L., Furuya, K., (2007) Phys. Rev., 75 (4), p. 042315Pellizzari, T., (1997) Phys. Rev. Lett., 79 (26), p. 5242Peng, P., Li, F., (2007) Phys. Rev., 75 (6), p. 062320Carmichael, H.J., (1993) Lectures Notes in Physics: An Open System Approach to Quantum OpticsCh, R., Th, Z., Rohde, H., Nägerl, H.C., Eschner, J., Leibfried, D., Schmidt-Kaler, F., Blatt, R., (1999) Phys. Rev. Lett., 83 (23), p. 4713Schneider, S., Milburn, G.J., (1999) Phys. Rev., 59 (5), p. 3766Mancini, S., Vitali, D., Tombesi, P., (2000) Phys. Rev., 61 (5), p. 053404Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K., (1996) Phys. Rev., 54 (5), p. 3824Vahala, K.J., (2003) Nature, 424 (6950), p. 839Eriksson, S., Al, E., (2005) Eur. Phys. J., 35 (1), p. 135Hwang, I., Kim, G., Lee, Y., (2006) IEE J. Quantum Electron., 42, p. 132Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J., (2003) Phys. Rev. Lett., 91 (4), p. 04390

    Quantum Superpositions of Binomial States of Light

    No full text

    Statistical And Phase Properties Of The Binomial States Of The Electromagnetic Field

    No full text
    We investigate the nonclassical properties of the single-mode binomial states of the quantized electromagnetic field. We concentrate our analysis on the fact that the binomial states interpolate between the coherent states and the number states, depending on the values of the parameters involved. We discuss their statistical properties, such as squeezing (second and fourth order) and sub-Poissonian character. We show how the transition between those two fundamentally different states occurs, employing quasiprobability distributions in phase space, and we provide, at the same time, an interesting picture for the origin of second-order quadrature squeezing. We also discuss the phase properties of the binomial states using the Hermitian-phase-operator formalism. © 1994 The American Physical Society.5065233524

    Generation Of States Maximally Entanglement (epr States) By Passing Two Atoms Through Two Coupled Cavities

    No full text
    We present the results of the interaction of identical two-level atoms with a system formed by two identical coupled cavities via evanescent field. With new bosonic operators (normal nodes), the interaction Hamiltonian between the cavities can be diagonalized. In a particular case, we can eliminate the interaction of the atoms with the nonresonant normal modes reducing the system to the interaction of the atom with a single-mode (like JCM). As an application of this interaction, we analyze the entanglement between distant atoms. We present two related simple procedures to generate two atoms maximally entangled state (EPR pair) interacting (i)successively (atoms passing through the cavities at different moments) and (ii) simultaneously (at the same time) with the coupled cavities system. Moreover, in contrast with other schemes, we can use identical atoms which simplifies in a experiment point of view. © 2008 American Institute of Physics.992472477Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , Saunders: PhiladelphiaJaynes, E.T., Cummings, F.W., (1963) Proc. IEEE, 51, p. 89Skarja, M., Borstnik, N.M., Löffler, M., Walther, H., (1999) Phys. Rev. A, 60, p. 3229Zoubi, H., Orenstein, M., Ron, A., (2000) Phys. Rev. A, 62, p. 033801Luis, A., Sánchez-Soto, L.L., (1999) Phys. Lett. A, 252, p. 130de Ponte, M.A., de Oliveira, M.C., Moussa, M.H.Y., (2003), quant-ph/0309082Cirac, J.I., Zoller, P., (1994) Phys. Rev. A, 50, pp. R2799Hagley, E., Maître, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S., (1997) Phys. Rev. Lett, 79, p. 1Zheng, S.-B., Guo, G.-C., (2000) Phys. Rev. Lett, 85, p. 2392Guo, G.-P., Li, C.-F., Li, J., Guo, G.-C., (2002) Phys. Rev. A, 65, p. 042102Gerry, C.C., (1996) Phys. Rev. A, 53, p. 4583Pellizzari, T., (1997) Phys. Rev. Lett, 79, p. 5242Serafini, A., Mancini, S., Bose, S., (2006) Phys. Rev. Lett, 96, p. 010503B. F. C. Yabu-uti, F. K. Nohama, and J. A. Roversi, to be submitted to J. Mod. OptYin, Z.-Q., Li, F.-L., (2007) Phys. Rev. A, 75, p. 012324Peng, P., Li, F.-L., (2007) Phys. Rev. A, 75, p. 06232
    corecore