1,982 research outputs found

    When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks

    Get PDF
    A network coding scheme for practical implementations of wireless body area networks is presented, with the objective of providing reliability under low-energy constraints. We propose a simple network layer protocol for star networks, adapting redundancy based on both transmission and reception energies for data and control packets, as well as channel conditions. Our numerical results show that even for small networks, the amount of energy reduction achievable can range from 29% to 87%, as the receiving energy per control packet increases from equal to much larger than the transmitting energy per data packet. The achievable gains increase as a) more nodes are added to the network, and/or b) the channels seen by different sensor nodes become more asymmetric.Comment: 10 pages, 7 figures, submitted to the NC-Pro Workshop at IFIP Networking Conference 2011, and to appear in the conference proceedings, published by Springer-Verlag, in the Lecture Notes in Computer Science (LNCS) serie

    Low-power, low-penalty, flip-chip integrated, 10Gb/s ring-based 1V CMOS photonics transmitter

    Get PDF
    Modulation with 7.5dB transmitter penalty is demonstrated from a novel 1.5Vpp differential CMOS driver flip-chip integrated with a Si ring modulator, consuming 350fJ/bit from a single 1V supply at bit rates up to 10Gb/s

    Geometric Generalisations of SHAKE and RATTLE

    Full text link
    A geometric analysis of the Shake and Rattle methods for constrained Hamiltonian problems is carried out. The study reveals the underlying differential geometric foundation of the two methods, and the exact relation between them. In addition, the geometric insight naturally generalises Shake and Rattle to allow for a strictly larger class of constrained Hamiltonian systems than in the classical setting. In order for Shake and Rattle to be well defined, two basic assumptions are needed. First, a nondegeneracy assumption, which is a condition on the Hamiltonian, i.e., on the dynamics of the system. Second, a coisotropy assumption, which is a condition on the geometry of the constrained phase space. Non-trivial examples of systems fulfilling, and failing to fulfill, these assumptions are given

    Recurrence quantification analysis as a tool for the characterization of molecular dynamics simulations

    Full text link
    A molecular dynamics simulation of a Lennard-Jones fluid, and a trajectory of the B1 immunoglobulin G-binding domain of streptococcal protein G (B1-IgG) simulated in water are analyzed by recurrence quantification, which is noteworthy for its independence from stationarity constraints, as well as its ability to detect transients, and both linear and nonlinear state changes. The results demonstrate the sensitivity of the technique for the discrimination of phase sensitive dynamics. Physical interpretation of the recurrence measures is also discussed.Comment: 7 pages, 8 figures, revtex; revised for review for Phys. Rev. E (clarifications and expansion of discussion)-- addition of the 8 postscript figures previously omitted, but unchanged from version

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio

    Maximum Flux Transition Paths of Conformational Change

    Full text link
    Given two metastable states A and B of a biomolecular system, the problem is to calculate the likely paths of the transition from A to B. Such a calculation is more informative and more manageable if done for a reduced set of collective variables chosen so that paths cluster in collective variable space. The computational task becomes that of computing the "center" of such a cluster. A good way to define the center employs the concept of a committor, whose value at a point in collective variable space is the probability that a trajectory at that point will reach B before A. The committor "foliates" the transition region into a set of isocommittors. The maximum flux transition path is defined as a path that crosses each isocommittor at a point which (locally) has the highest crossing rate of distinct reactive trajectories. (This path is different from that of the MaxFlux method of Huo and Straub.) It is argued that such a path is nearer to an ideal path than others that have been proposed with the possible exception of the finite-temperature string method path. To make the calculation tractable, three approximations are introduced, yielding a path that is the solution of a nonsingular two-point boundary-value problem. For such a problem, one can construct a simple and robust algorithm. One such algorithm and its performance is discussed.Comment: 7 figure

    Molecular dynamics simulation of polymer helix formation using rigid-link methods

    Full text link
    Molecular dynamics simulations are used to study structure formation in simple model polymer chains that are subject to excluded volume and torsional interactions. The changing conformations exhibited by chains of different lengths under gradual cooling are followed until each reaches a state from which no further change is possible. The interactions are chosen so that the true ground state is a helix, and a high proportion of simulation runs succeed in reaching this state; the fraction that manage to form defect-free helices is a function of both chain length and cooling rate. In order to demonstrate behavior analogous to the formation of protein tertiary structure, additional attractive interactions are introduced into the model, leading to the appearance of aligned, antiparallel helix pairs. The simulations employ a computational approach that deals directly with the internal coordinates in a recursive manner; this representation is able to maintain constant bond lengths and angles without the necessity of treating them as an algebraic constraint problem supplementary to the equations of motion.Comment: 15 pages, 14 figure

    Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

    Full text link
    In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 ÎČ\beta-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the ÎČ\beta-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143^{143}, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The paper now has 23 pages, 11 figures. This work was presented at 2006 APS March meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has been accepted for pubcliation in European Biophysical Journal on Feb 2, 200

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure
    • 

    corecore