1,982 research outputs found
When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks
A network coding scheme for practical implementations of wireless body area
networks is presented, with the objective of providing reliability under
low-energy constraints. We propose a simple network layer protocol for star
networks, adapting redundancy based on both transmission and reception energies
for data and control packets, as well as channel conditions. Our numerical
results show that even for small networks, the amount of energy reduction
achievable can range from 29% to 87%, as the receiving energy per control
packet increases from equal to much larger than the transmitting energy per
data packet. The achievable gains increase as a) more nodes are added to the
network, and/or b) the channels seen by different sensor nodes become more
asymmetric.Comment: 10 pages, 7 figures, submitted to the NC-Pro Workshop at IFIP
Networking Conference 2011, and to appear in the conference proceedings,
published by Springer-Verlag, in the Lecture Notes in Computer Science (LNCS)
serie
Low-power, low-penalty, flip-chip integrated, 10Gb/s ring-based 1V CMOS photonics transmitter
Modulation with 7.5dB transmitter penalty is demonstrated from a novel 1.5Vpp differential CMOS driver flip-chip integrated with a Si ring modulator, consuming 350fJ/bit from a single 1V supply at bit rates up to 10Gb/s
Geometric Generalisations of SHAKE and RATTLE
A geometric analysis of the Shake and Rattle methods for constrained
Hamiltonian problems is carried out. The study reveals the underlying
differential geometric foundation of the two methods, and the exact relation
between them. In addition, the geometric insight naturally generalises Shake
and Rattle to allow for a strictly larger class of constrained Hamiltonian
systems than in the classical setting.
In order for Shake and Rattle to be well defined, two basic assumptions are
needed. First, a nondegeneracy assumption, which is a condition on the
Hamiltonian, i.e., on the dynamics of the system. Second, a coisotropy
assumption, which is a condition on the geometry of the constrained phase
space. Non-trivial examples of systems fulfilling, and failing to fulfill,
these assumptions are given
Recurrence quantification analysis as a tool for the characterization of molecular dynamics simulations
A molecular dynamics simulation of a Lennard-Jones fluid, and a trajectory of
the B1 immunoglobulin G-binding domain of streptococcal protein G (B1-IgG)
simulated in water are analyzed by recurrence quantification, which is
noteworthy for its independence from stationarity constraints, as well as its
ability to detect transients, and both linear and nonlinear state changes. The
results demonstrate the sensitivity of the technique for the discrimination of
phase sensitive dynamics. Physical interpretation of the recurrence measures is
also discussed.Comment: 7 pages, 8 figures, revtex; revised for review for Phys. Rev. E
(clarifications and expansion of discussion)-- addition of the 8 postscript
figures previously omitted, but unchanged from version
An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints
In this work, we introduce an algorithm to compute the derivatives of
physical observables along the constrained subspace when flexible constraints
are imposed on the system (i.e., constraints in which the hard coordinates are
fixed to configuration-dependent values). The presented scheme is exact, it
does not contain any tunable parameter, and it only requires the calculation
and inversion of a sub-block of the Hessian matrix of second derivatives of the
function through which the constraints are defined. We also present a practical
application to the case in which the sought observables are the Euclidean
coordinates of complex molecular systems, and the function whose minimization
defines the constraints is the potential energy. Finally, and in order to
validate the method, which, as far as we are aware, is the first of its kind in
the literature, we compare it to the natural and straightforward
finite-differences approach in three molecules of biological relevance:
methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio
Maximum Flux Transition Paths of Conformational Change
Given two metastable states A and B of a biomolecular system, the problem is
to calculate the likely paths of the transition from A to B. Such a calculation
is more informative and more manageable if done for a reduced set of collective
variables chosen so that paths cluster in collective variable space. The
computational task becomes that of computing the "center" of such a cluster. A
good way to define the center employs the concept of a committor, whose value
at a point in collective variable space is the probability that a trajectory at
that point will reach B before A. The committor "foliates" the transition
region into a set of isocommittors. The maximum flux transition path is defined
as a path that crosses each isocommittor at a point which (locally) has the
highest crossing rate of distinct reactive trajectories. (This path is
different from that of the MaxFlux method of Huo and Straub.) It is argued that
such a path is nearer to an ideal path than others that have been proposed with
the possible exception of the finite-temperature string method path. To make
the calculation tractable, three approximations are introduced, yielding a path
that is the solution of a nonsingular two-point boundary-value problem. For
such a problem, one can construct a simple and robust algorithm. One such
algorithm and its performance is discussed.Comment: 7 figure
Molecular dynamics simulation of polymer helix formation using rigid-link methods
Molecular dynamics simulations are used to study structure formation in
simple model polymer chains that are subject to excluded volume and torsional
interactions. The changing conformations exhibited by chains of different
lengths under gradual cooling are followed until each reaches a state from
which no further change is possible. The interactions are chosen so that the
true ground state is a helix, and a high proportion of simulation runs succeed
in reaching this state; the fraction that manage to form defect-free helices is
a function of both chain length and cooling rate. In order to demonstrate
behavior analogous to the formation of protein tertiary structure, additional
attractive interactions are introduced into the model, leading to the
appearance of aligned, antiparallel helix pairs. The simulations employ a
computational approach that deals directly with the internal coordinates in a
recursive manner; this representation is able to maintain constant bond lengths
and angles without the necessity of treating them as an algebraic constraint
problem supplementary to the equations of motion.Comment: 15 pages, 14 figure
Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank
In the template-assistance model, normal prion protein (PrPC), the pathogenic
cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine
Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to
infectious prion (PrPSc) through an autocatalytic process triggered by a
transient interaction between PrPC and PrPSc. Conventional studies suggest the
S1-H1-S2 region in PrPC to be the template of S1-S2 -sheet in PrPSc, and
the conformational conversion of PrPC into PrPSc may involve an unfolding of H1
in PrPC and its refolding into the -sheet in PrPSc. Here we conduct a
series of simulation experiments to test the idea of transient interaction of
the template-assistance model. We find that the integrity of H1 in PrPC is
vulnerable to a transient interaction that alters the native dihedral angles at
residue Asn, which connects the S1 flank to H1, but not to interactions
that alter the internal structure of the S1 flank, nor to those that alter the
relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The
paper now has 23 pages, 11 figures. This work was presented at 2006 APS March
meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has
been accepted for pubcliation in European Biophysical Journal on Feb 2, 200
Growth of (110) Diamond using pure Dicarbon
We use a density-functional based tight-binding method to study diamond
growth steps by depositing dicarbon species onto a hydrogen-free diamond (110)
surface. Subsequent C_2 molecules are deposited on an initially clean surface,
in the vicinity of a growing adsorbate cluster, and finally, near vacancies
just before completion of a full new monolayer. The preferred growth stages
arise from C_2n clusters in near ideal lattice positions forming zigzag chains
running along the [-110] direction parallel to the surface. The adsorption
energies are consistently exothermic by 8--10 eV per C_2, depending on the size
of the cluster. The deposition barriers for these processes are in the range of
0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies
are smaller by 3 eV, but diffusion to more stable positions is feasible. We
also perform simulations of the diffusion of C_2 molecules on the surface in
the vicinity of existing adsorbate clusters using an augmented Lagrangian
penalty method. We find migration barriers in excess of 3 eV on the clean
surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier
heights and pathways indicate that the growth from gaseous dicarbons proceeds
either by direct adsorption onto clean sites or after migration on top of the
existing C_2n chains.Comment: 8 Pages, 7 figure
- âŠ